首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cx26 and cx30 co-localize in tissues of the mammalian cochlea. Transfected HeLa cells were used to examine interactions between cx26 and cx30 and the effects on cx30 of four point mutations in cx26 that are associated with dominantly inherited hearing loss—W44S, G59A, D66H and R75W. When co-expressed, wtcx26 and wtcx30 trafficked to the same gap junction plaques. Cells transferred neurobiotin but not Lucifer Yellow, which passes freely through cx26 channels, suggesting cx30 affects the properties of cx26. G59A and D66H had a perinuclear localization when expressed alone but trafficked to the membrane when co-expressed with cx30. Co-expression of W44S, G59A or R75W with cx30, significantly reduced neurobiotin transfer in comparison with cells expressing cx30 only. These results indicate that cx26 and cx30 can oligomerize to form heteromeric connexons and demonstrate a dominant negative effect of some cx26 mutants on cx30. Immunogold labeling of thin sections of the cochlea showed both cx26 and cx30 distributed evenly on both sides of individual gap junction profiles. Immunoprecipitation of cochlear membrane proteins, isolated by procedures that preserve connexons, with either cx30 or cx26 antibodies precipitated both cx26 and cx30. Following co-injection of Lucifer Yellow and neurobiotin into individual supporting cells of the organ of Corti in cochlear slices, neurobiotin transferred to many cells, but Lucifer Yellow was retained in the injected cell. These observations are consistent with junctions composed of cx26/cx30 heteromeric connexons in the cochlea. The functional disruption caused by some cx26 mutations upon such heteromeric channels may underlie the non-syndromic nature of their effects on hearing.  相似文献   

2.
3.
Pseudomonas aeruginosa is a pathogen that causes acute and chronic infections in a variety of hosts. The pathogenic potential of P. aeruginosa is strain-dependent. PA14 is a highly virulent strain that causes disease in a wide range of organisms, whereas PAO1 is moderately virulent. Although PA14 carries pathogenicity islands that are absent in PAO1, the presence or absence of specific gene clusters is not predictive of virulence. Here, we show that the virulent strain PA14 has an acquired mutation in the ladS gene. This mutation has a deleterious impact on biofilm, while it results in elevated type III secretion system (T3SS) activity and increased cytotoxicity towards mammalian cells. These phenotypes can be reverted by repairing the ladS mutation on the PA14 genome. The RetS/LadS/GacS signaling cascade is associated with virulence and the switch between acute and chronic infections. RetS is a sensor that down-regulates biofilm formation and up-regulates the T3SS. Mutations in retS are acquired in strains isolated from chronically infected cystic fibrosis patients and lead to hyperbiofilm formation and reduced cytotoxicity. Conversely, the LadS sensor promotes biofilm formation and represses the T3SS. We conclude that the ladS mutation is partly responsible for the high cytotoxicity of PA14, and our findings corroborate the central role of RetS and LadS in the switch between acute and chronic infections. Given the extensive use of the reference strain PA14 in infection and virulence models, the bias caused by the ladS mutation on the observed phenotypes will be crucial to consider in future research.  相似文献   

4.
Two strains of Salmonella typhimurium presenting increased mutation rates, either spontaneous or mediated by DNA damage, have been constructed. One of the strains carries a null mutS mutation, while the other harbors plasmid pRW30, which contains the Escherichia coli umuDC operon. The virulence of these strains has been determined by inoculating BALB/c or Swiss mice. The 50% lethal dose of both strains is identical to that obtained for the wild-type. Likewise, the two strains and the wild-type contribute equally to animal death in mixed infections. The frequency of Nal(R) mutants recovered from animals inoculated with either wild-type or MutS(-) cells was not affected by the presence of pRW30. These results indicate that the DNA damage which S. typhimurium cells can suffer during the infectious process by host cell metabolites does not cause induction of the SOS response at levels able to trigger the error-prone DNA repair pathway.  相似文献   

5.
t haplotypes are naturally occurring, variant forms of the t complex on mouse chromosome 17, characterized by the presence of four inversions with respect to wild-type. They harbour mutations causing male sterility, male transmission ratio distortion (TRD) and embryonic lethality. Mice carrying t haplotypes have been found throughout the world, and genetic studies of the lethal mutations have identified at least 16 complementation groups. The embryonic lethal phenotypes of many t haplotypes have been characterized in detail, and are thought to be the consequence of homozygosity for single gene mutations. However, the existence of additional mutations in genes that function at later stages of development would be obscured. Here we investigated the possibility of multiple mutations in t haplotypes by screening the t(w73) haplotype for the presence of novel mutations. Since genetic analysis of t haplotype mutations is hindered by recombination suppression due to the inversions, deletion complexes covering the proximal two-thirds of the t complex were used to uncover the presence of any new lethal alleles. This analysis revealed a novel mutation between D17Jcs41 and D17Mit100, causing mice carrying both t(w73) and selected deletions to die at birth, prior to feeding. The finding of a new, cryptic lethal mutation in t haplotypes is an indication that these recombinationally isolated chromosomes, which already contain at least one lethal mutation that prevents homozygosity, may serve as sinks for the accumulation of additional recessive mutations.  相似文献   

6.
In order to characterize connexin expression and regulation in the epidermis, we have characterized a rat epidermal keratinocyte (REK) cell line that is phenotypically similar to basal keratinocytes in that they have the ability to differentiate into organotypic epidermis consisting of a basal cell layer, 2-3 suprabasal cell layers, and a cornified layer. RT-PCR revealed that REK cells express mRNA for Cx26, Cx31, Cx31.1, Cx37, and Cx43, which mimics the reported connexin profile for rat tissue. In addition, we report the expression of Cx30, Cx30.3, Cx40, and Cx45 in rat keratinocytes, highlighting the complexity of the connexin complement in rat epidermis. Furthermore, 3-dimensional analysis of organotypic skin revealed that Cx26 and Cx43 are exquisitely regulated during the differentiation process. The life-cycle of these connexins including their expression, transport, assembly into gap junctions, internalization, and degradation are elegantly depicted in organotypic epidermis as keratinocytes proceed from differentiation to programmed cell death.  相似文献   

7.
8.
9.
Mutations in GJB2 encoding the gap junction protein connexin-26 (Cx26) have been established as the basis of autosomal recessive non-syndromic hearing loss. The involvement of GJB2 in autosomal dominant deafness has also been proposed, although the putative mutation identified in one family with both deafness and palmoplantar keratoderma has recently been suggested to be merely a non-disease associated polymorphism. We have observed a similar phenotype in an Egyptian family that segregated with a heterozygous missense mutation of GJB2, leading to a non-conservative amino acid substitution (R75W). The deleterious dominant-negative effect of R75W on gap channel function was subsequently demonstrated in the paired oocyte expression system. Not only was R75W alone incapable of inducing electrical conductance between adjacent cells, but it almost completely suppressed the activity of co-expressed wildtype protein. The Cx26 mutant W77R, which has been implicated in autosomal recessive deafness, also failed to form functional gap channels by itself but did not significantly interfere with the function of wildtype Cx26. These data provide compelling evidence for the serious functional consequences of Cx26 mutations in dominant and recessive deafness. Received: 22 June 1998 / Accepted: 15 July 1998  相似文献   

10.
Individuals with Li-Fraumeni syndrome carry inherited mutations in the p53 tumor suppressor gene and are predisposed to tumor development. To examine the mechanistic nature of these p53 missense mutations, we generated mice harboring a G-to-A substitution at nucleotide 515 of p53 (p53+/515A) corresponding to the p53R175H hot spot mutation in human cancers. Although p53+/515A mice display a similar tumor spectrum and survival curve as p53+/- mice, tumors from p53+/515A mice metastasized with high frequency. Correspondingly, the embryonic fibroblasts from the p53515A/515A mutant mice displayed enhanced cell proliferation, DNA synthesis, and transformation potential. The disruption of p63 and p73 in p53-/- cells increased transformation capacity and reinitiated DNA synthesis to levels observed in p53515A/515A cells. Additionally, p63 and p73 were functionally inactivated in p53515A cells. These results provide in vivo validation for the gain-of-function properties of certain p53 missense mutations and suggest a mechanistic basis for these phenotypes.  相似文献   

11.
Ferry G  Giganti A  Cogé F  Bertaux F  Thiam K  Boutin JA 《FEBS letters》2007,581(18):3572-3578
Autotaxin is a member of the phosphodiesterase family of enzymes, (NPP2). It is an important secreted protein found in conditioned medium from adipocytes. It also has a putative role in the metastatic process. Based on these observation, further validation of this potential target was necessary, apart from the classical biochemical ones. The construction of a knock out mouse strain for ATX was started. In this paper, we report the generation of a mouse line displaying an inactivated ATX gene product. The KO line was designed in order to generate a functional inactivation of the protein. In this respect, the threonine residue T210 was replaced by an alanine (T210A) leading to a catalytically inactive enzyme. If the experimental work was straight forward, we disappointedly discovered at the final stage that the breeding of heterozygous animals, ATX -/+, led to the generation of a Mendelian repartition of wild-type and heterozygous, but no homozygous were found, strongly suggesting that the ATX deletion is lethal at an early stage of the development. This was confirmed by statistical analysis. Although other reported the same lethality for attempted ATX-/- mice generation [van Meeteren, L.A., Ruurs, P., Stortelers, C., Bouwman, P., van Rooijen, M.A., Pradère, J.P., Pettit, T.R., Wakelam, M.J.O., Saulnier-Blache, J.S., Mummery, C.L., Moolenar, W.H. and Jonkers, J. (2006) Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development, Mol. Cell. Biol. 26, 5015-5022; Tanaka, M., Okudaira, S., Kishi, Y., Ohkawa, R., Isei, S., Ota, M., Noji, S., Yatomi, Y., Aoki, J., and Arai, H. (2006) Autotaxin stabilizes blood vessels and is required for embryonic vasculature by producing lysophosphatidic acid, J. Biol. Chem. 281, 25822-25830], they used more drastic multiple exon deletions in the ATX gene, while we chose a single point mutation. To our knowledge, the present work is the first showing such a lethality in any gene after a point mutation in an enzyme catalytic site.  相似文献   

12.
Effects of the lethal yellow (Ay) mutation in mouse aggregation chimeras   总被引:1,自引:0,他引:1  
The Ay allele is a recessive lethal mutation at the mouse agouti locus, which results in embryonic death around the time of implantation. In the heterozygous state, Ay produces several dominant pleiotropic effects, including an increase in weight gain and body length, a susceptibility to hepatic, pulmonary and mammary tumors, and a suppression of the agouti phenotype, which results in a yellow coat color. To investigate the cellular action of Ay with regard to its effects upon embryonic viability and adult-onset obesity, we generated a series of aggregation chimeras using embryos that differ in their agouti locus genotype. Embryos derived from Ay/a x Ay/a matings were aggregated with those derived from A/A x A/A matings, and genotypic identification of the resultant chimeras was accomplished using a molecular probe at the Emv-15 locus that distinguishes among the three different alleles, Ay, A, and a. Among 50 chimeras, 25 analyzed as liveborns and 25 as 9.5 day embryos, 29 were a/a in equilibrium A/A and 21 were Ay/a in equilibrium A/A. The absence of Ay/Ay in equilibrium A/A chimeras demonstrates that Ay/Ay cells cannot be rescued in a chimeric environment, and the relative deficiency of Ay/a in equilibrium A/A chimeras suggests that, under certain conditions, Ay heterozygosity may partially affect cell viability or proliferation. In the 25 liveborn chimeras, Ay/a in equilibrium A/A animals became obese as adults and a/a in equilibrium A/A animals did not. There was no correlation between genotypic proportions and rate of weight gain, which shows that, with regard to its effects on weight gain, Ay heterozygosity is cell non-autonomous.  相似文献   

13.
Thp is a large deletion on chromosome 17 which includes the maternal lethal gene Tme. Documentation of inheritance patterns suggests that Tme is an imprinted gene which is required for viability; maternal deletion is lethal while paternal deletion is viable. However, paternal transmission of Thp is rarely the expected 50%. We show here that paternally inherited Thp is lethal in some strains, providing evidence of an incompletely penetrant, dosage sensitive lethal allele of a locus that probably maps to the hairpin tail region of chr. 17. Interpretation of the various phenotypes associated with loss of the putative Tme gene, lgf2r, may need to be revised in view of these observations. Dev Genet 20:23–28, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
15.
16.
Diploid embryos which are homozygous for the t12 mutation die at the morula stage. In the current studies, ova from heterozygous (+t12) females were fertilized in vitro with spermatozoa from +t12 males. The fertilized ova were immediately placed into media containing cytochalasin B to prevent second polar body formation, producing +/+/+, +/+/t12, +/t12/t12, and t12/t12/t12 embryos. The subsequent development of these triploid embryos was compared with that of diploid +/+, +t12, and t12t12 embryos developing from ova which were also fertilized in vitro with spermatozoa from +t12 males but which were not treated with cytochalasin B immediately following gamete coincubation. The data show that those triploid embryos which possess a wild-type allele and two mutant alleles are phenotypically wild type while those possessing three mutant alleles are not phenotypically distinguishable from their diploid (t12t12) counterparts. Like t12t12 embryos, t12/t12/t12 embryos die at the morula stage, prior to blastocoelic cavity formation.  相似文献   

17.
The region of mouse Chromosome (Chr) 7 containing the mouse pink-eyed dilution locus, p, is syntenic with human chromosome 15q11–q13, a region associated with three human syndromes, Prader-Willi syndrome (PWS), Angelman syndrome (AS), and a form of hypomelanosis of Ito (HI). Because some mutant alleles of p also share a subset of phenotypes with PWS, AS, and HI, the same gene or genes disrupted by p locus mutations are potentially involved in the phenotypes of PWS, AS, and HI.  相似文献   

18.
The COL2A1 gene encodes the ??1(II) chain of the homotrimeric type II collagen, the most abundant protein in cartilage. In humans, COL2A1 mutations create many clinical phenotypes collectively termed type II collagenopathies; however, the genetic basis of the phenotypic diversity is not well elucidated. Therefore, animal models corresponding to multiple type II collagenopathies are required. In this study we identified a novel Col2a1 missense mutation??c.44406A>C (p.D1469A)??produced by large-scale N-ethyl-N-nitrosourea (ENU) mutagenesis in a mouse line. This mutation was located in the C-propeptide coding region of Col2a1 and in the positions corresponding to a human COL2A1 mutation responsible for platyspondylic lethal skeletal dysplasia, Torrance type (PLSD-T). The phenotype was inherited as a semidominant trait. The heterozygotes were mildly but significantly smaller than wild-type mice. The homozygotes exhibited lethal skeletal dysplasias, including extremely short limbs, severe spondylar dysplasia, severe pelvic hypoplasia, and brachydactyly. As expected, these skeletal defects in the homozygotes were similar to those in PLSD-T patients. The secretion of the mutant proteins into the extracellular space was disrupted, accompanied by abnormally expanded rough endoplasmic reticulum (ER) and upregulation of ER stress-related genes, such as Grp94 and Chop, in chondrocytes. These findings suggested that the accumulation of mutant type II collagen in the ER and subsequent induction of ER stress are involved, at least in part in the PLSD-T?Clike phenotypes of the mutants. This mutant should serve as a good model for studying PLSD-T pathogenesis and the mechanisms that create the great diversity of type II collagenopathies.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号