首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Traditional breeding methods are hindered in bananas due to the fact that major cultivars are sterile, parthenocarpic, triploid and thus clonally propagated. This has resulted in a narrow genetic base and limited resilience to biotic and abiotic stresses. Mutagenesis of in vitro propagated bananas is one method to introduce novel alleles and broaden genetic diversity. We previously established a method for the induction and recovery of single nucleotide mutations generated with the chemical mutagen EMS. However, officially released mutant banana varieties have been created using gamma rays, a mutagen that can produce large genomic insertions and deletions (indels). Such dosage mutations may be important for generating observable phenotypes in polyploids. In this study, we establish a low‐coverage whole‐genome sequencing approach in triploid bananas to recover large genomic indels caused by treatment with gamma irradiation. We first evaluated the commercially released mutant cultivar ‘Novaria’ and found that it harbours multiple predicted deletions, ranging from 0.3 to 3.8 million base pairs (Mbp). In total, predicted deletions span 189 coding regions. To evaluate the feasibility of generating and maintaining new mutations, we developed a pipeline for mutagenesis and screening for copy number variation in Cavendish bananas using the cultivar ‘Williams’. Putative mutations were recovered in 70% of lines treated with 20 Gy and 60% of the lines treated with 40 Gy. While deletion events predominate, insertions were identified in 20 Gy‐treated material. Based on these results, we believe this approach can be scaled up to support large breeding projects.  相似文献   

2.
采用SRAP分子标记技术对29个香蕉品种(系)的多样性进行研究,结果显示,64对SRAP引物中筛选出25个多态性较高的引物组合,共扩增出324条条带;UPGAM聚类图显示所有供试的29个香蕉品种(系)可分为2个类群且与基因型相一致;实验结果与形态、农艺性状标记分类基本一致。研究表明,SRAP技术可有效运用于香蕉基因型的遗传和育种研究。  相似文献   

3.
Since the first two successful transformation events in banana were reported in 1995, considerable effort has been invested to develop new cultivars with improved tolerance to biotic and abiotic stresses and with enhanced nutrient levels, primarily using Agrobacterium‐mediated transformation and particle bombardment. In addition to many promising laboratory‐based studies, several genetically engineered banana cultivars have been trialled in the field. However, the deployment of genetically engineered varieties of bananas lags behind that of other major crops and there has been no commercial plantation. This article provides a review of advances in the genetic engineering of banana with an overview of noteworthy developments in several programmes that are being conducted worldwide. We identify the main challenges to translating the full potential of genetically engineered bananas for human consumption as the intellectual property issues surrounding the technology, public perceptions towards the adoption of the transformed bananas as well as various regulatory hurdles that hold the technology development from moving forward.  相似文献   

4.
Domestication, genomics and the future for banana   总被引:5,自引:1,他引:4  
BACKGROUND: Cultivated bananas and plantains are giant herbaceous plants within the genus Musa. They are both sterile and parthenocarpic so the fruit develops without seed. The cultivated hybrids and species are mostly triploid (2n = 3x = 33; a few are diploid or tetraploid), and most have been propagated from mutants found in the wild. With a production of 100 million tons annually, banana is a staple food across the Asian, African and American tropics, with the 15 % that is exported being important to many economies. SCOPE: There are well over a thousand domesticated Musa cultivars and their genetic diversity is high, indicating multiple origins from different wild hybrids between two principle ancestral species. However, the difficulty of genetics and sterility of the crop has meant that the development of new varieties through hybridization, mutation or transformation was not very successful in the 20th century. Knowledge of structural and functional genomics and genes, reproductive physiology, cytogenetics, and comparative genomics with rice, Arabidopsis and other model species has increased our understanding of Musa and its diversity enormously. CONCLUSIONS: There are major challenges to banana production from virulent diseases, abiotic stresses and new demands for sustainability, quality, transport and yield. Within the genepool of cultivars and wild species there are genetic resistances to many stresses. Genomic approaches are now rapidly advancing in Musa and have the prospect of helping enable banana to maintain and increase its importance as a staple food and cash crop through integration of genetical, evolutionary and structural data, allowing targeted breeding, transformation and efficient use of Musa biodiversity in the future.  相似文献   

5.
The genetic diversity and phylogenetic relationships of 29 East African highland banana (Musa spp.) cultivars and two outgroup taxa, M. acuminata Calcutta 4 and Agbagba were surveyed by RAPD analysis. A genetic similarity matrix was established based on the presence or absence of polymorphic amplified fragments. Phylogenetic relationships were determined by UPGMA cluster analysis. RAPDs showed that the highland bananas are closely related with a narrow genetic base. Nevertheless, there were sufficient RAPD polymorphisms that were collectively useful in distinguishing the cultivars. The dendrogram was divisible into a major cluster composed of all the AAA highland banana cultivars and Agbagba (AAB) and a minor cluster consisting of Kisubi (AB), Kamaramasenge (AB) and Calcutta 4 (AA). Several subgroups are recognized within the major cluster. RAPD data did not separate beer and cooking banana cultivars. Our study showed that RAPD markers can readily dissect genetic differences between the closely related highland bananas and provide a basis for the selection of parents for improvement of this germplasm. Received: 28 June 2000 / Accepted: 1 August 2000  相似文献   

6.
A large amount of banana genetic resource has been found in Thailand which is believed to be one of the centers of its origins. To assess genetic diversity and determine genetic relationships of edible bananas in Thailand, 110 accessions of banana species and cultivars collected from villages and natural locations were investigated. UPGMA clustering of numerical data from Amplified Fragment Length Polymorphism (AFLP) patterns showed two large groups which corresponded to genome designations of Musa acuminata (AA) and Musa balbisiana (BB), the known ancestors of most edible cultivars. The AFLP data suggested that among Thai bananas, AA and AAA cultivars were closely related to M. acuminata subsp. malaccensis, while some of ‘B’ genome contained ones closely related to wild M. balbisiana in Thailand and some may have been imported. Eight species-specific PCR-based primer pairs, generated from the AFLP results clearly identify ‘A’ and ‘B’ genomes within cultivars and hybrids. The analyses were useful to readily and easily infer progenitors of these cultivars and pronounce wide genetic diversity of the bananas in Thailand.  相似文献   

7.
8.
Proteomics has been applied with great potential to elucidate molecular mechanisms in plants. This is especially valid in the case of non‐model crops of which their genome has not been sequenced yet, or is not well annotated. Plantains are a kind of cooking bananas that are economically very important in Africa, India, and Latin America. The aim of this work was to characterize the fruit proteome of common dessert bananas and plantains and to identify proteins that are only encoded by the plantain genome. We present the first plantain fruit proteome. All data are available via ProteomeXchange with identifier PXD005589. Using our in‐house workflow, we found 37 alleles to be unique for plantain covered by 59 peptides. Although we do not have access (yet) to whole‐genome sequencing data from triploid banana cultivars, we show that proteomics is an easily accessible complementary alternative to detect different allele specific SNPs/SAAPs. These unique alleles might contribute toward the differences in the metabolism between dessert bananas and plantains. This dataset will stimulate further analysis by the scientific community, boost plantain research, and facilitate plantain breeding.  相似文献   

9.
Biotechnology of the Banana: A Review of Recent Progress   总被引:7,自引:0,他引:7  
Abstract: A number of biotechnological tools have been developed which could help breeders to evolve new plant types to meet the demand of the food industry in the next century. Available techniques for the transfer of genes could significantly shorten the breeding procedures and overcome some of the agronomic and environmental problems which would otherwise not be possible through conventional methods. In vitro protocols have been standardized to allow commercially viable propagation of desired clones of Musa. An overview of the regeneration of banana by direct and indirect organogenesis, and somatic embryogenesis is presented in this article. In addition, the use of several other biotechnological techniques to enrich the genome of banana, such as selection of somaclonal variants, screening for various useful characteristics, cryopreservation, genetic transformation and molecular genetics are reviewed. In conclusion, the improvement of banana through modern biotechnology should help ensure food security by stabilizing production levels in sustainable cropping systems geared towards meeting domestic and export market demands.  相似文献   

10.

Key message

The rice local population was clearly differentiated into six groups over the 100-year history of rice breeding programs in the northern limit of rice cultivation over the world.

Abstract

Genetic improvements in plant breeding programs in local regions have led to the development of new cultivars with specific agronomic traits under environmental conditions and generated the unique genetic structures of local populations. Understanding historical changes in genome structures and phenotypic characteristics within local populations may be useful for identifying profitable genes and/or genetic resources and the creation of new gene combinations in plant breeding programs. In the present study, historical changes were elucidated in genome structures and phenotypic characteristics during 100-year rice breeding programs in Hokkaido, the northern limit of rice cultivation in the world. We selected 63 rice cultivars to represent the historical diversity of this local population from landraces to the current breeding lines. The results of the phylogenetic analysis demonstrated that these cultivars clearly differentiated into six groups over the history of rice breeding programs. Significant differences among these groups were detected in five of the seven traits, indicating that the differentiation of the Hokkaido rice population into these groups was correlated with these phenotypic changes. These results demonstrated that breeding practices in Hokkaido have created new genetic structures for adaptability to specific environmental conditions and breeding objectives. They also provide a new strategy for rice breeding programs in which such unique genes in local populations in the world can explore the genetic potentials of the local populations.  相似文献   

11.
Jatropha curcas L. (jatropha) is an undomesticated plant, which has received great attention in recent years for its potential in biofuel production and in greening and rehabilitation of wastelands. Yet the absence of improved cultivars and the lack of agronomic knowledge are limiting factors for successful jatropha cultivation. The objectives of the present study were to investigate the perspectives of a worldwide jatropha breeding program and specifically to (i) estimate variance components and heritabilities for agronomic and quality traits in the early phase of cultivation; (ii) assess phenotypic and genetic correlations among those traits; and (iii) discuss strategies for breeding high yielding jatropha cultivars. Data on various traits was collected from 375 jatropha genotypes, which were tested at seven locations during the first 3 years of growth. The accumulated seed yields and the seed yields per harvest year differed significantly among the testing locations. The estimates of genetic and genotype‐by‐environment interaction variances were significant and estimates of heritabilities were high for all yield parameters. The estimates of genetic correlations indicated a strong association among yield parameters. Oil yield was strongly correlated with seed yield and only weakly with oil content in seeds. The perspectives of a jatropha breeding program are excellent. Improved cultivars, definition of favorable environmental factors and refinement of agronomic management practices are needed to secure sustainable jatropha cultivation.  相似文献   

12.
Alfalfa (Medicago sativa) is an autotetraploid, allogamous and heterozygous species whose cultivars are synthetic populations. The breeders apply selection pressure for some agronomic traits within a breeding pool to increase the frequency of favorable individuals. The objective of this study was to investigate the differentiation level among seven cultivars originating from one breeding program, and between these cultivars and the breeding pool, with eight SSR markers. These highly polymorphic and codominant markers, together with recent population genetic statistics extended to autotetraploids, offer tools to analyse genetic diversity in alfalfa. The number of alleles per locus varied between 3 and 24. All loci were at a panmictic equilibrium in the cultivars, except one, probably because of null alleles. With seven SSR loci, each cultivar was at panmictic equilibrium. The mean gene diversity was high, ranging from 0.665 to 0.717 in the cultivars. The parameter F ST indicated a low but significant diversity among cultivars. Among 21 pairs of cultivars, 15 were significantly different. The breeding pool also had a high diversity, and was significantly different from each cultivar except the most recent one. Considering the characteristics of the breeding program and the mode of cultivar elaboration, we found that they were unable to generate a large variety differentiation. Estimation of population genetics parameters at SSR loci can be applied for assessing the differences between cultivars or populations, either for variety distinction or the management of genetic resources.  相似文献   

13.
During the last 90 years, the breeding of rice has delivered cultivars with improved agronomic and economic characteristics. Crossing of different lines and successive artificial selection of progeny based on their phenotypes have changed the chromosomal constitution of the ancestors of modern rice; however, the nature of these changes is unclear. The recent accumulation of data for genome-wide single-nucleotide polymorphisms (SNPs) in rice has allowed us to investigate the change in haplotype structure and composition. To assess the impact of these changes during modern breeding, we studied 177 Japanese rice accessions, which were categorized into three groups: landraces, improved cultivars developed from 1931 to 1974 (the early breeding phase), and improved cultivars developed from 1975 to 2005 (the late breeding phase). Phylogenetic tree and structure analysis indicated genetic differentiation between non-irrigated (upland) and irrigated (lowland) rice groups as well as genetic structuring within the irrigated rice group that corresponded to the existence of three subgroups. Pedigree analysis revealed that a limited number of landraces and cultivars was used for breeding at the beginning of the period of systematic breeding and that 11 landraces accounted for 70% of the ancestors of the modern improved cultivars. The values for linkage disequilibrium estimated from SNP alleles and the haplotype diversity determined from consecutive alleles in five-SNP windows indicated that haplotype blocks became less diverse over time as a result of the breeding process. A decrease in haplotype diversity, caused by a reduced number of polymorphisms in the haplotype blocks, was observed in several chromosomal regions. However, our results also indicate that new haplotype polymorphisms have been generated across the genome during the breeding process. These findings will facilitate our understanding of the association between particular haplotypes and desirable phenotypes in modern Japanese rice cultivars.  相似文献   

14.

Background

The cultivated banana and plantain (Musa spp.) are valuable for nutritional and socio-economic security for millions of people worldwide. In Benin, banana and plantain are among the most produced, consumed, and traded commodities. Its production is mainly for local consumption and remains insufficient to the demand. However, the varietal diversity of banana and plantain cultivated in Benin is not documented. This study aims at characterizing the banana and plantain cropping systems, genetic diversity, and production constraints as a baseline to the full utilization of this resource in crop improvement and to identify the potential production and agronomic qualities.

Methods

A baseline investigation of ethnobotanical attributes of banana cultivars was done in 51 randomly chosen villages in southern Benin. Interviews with randomly selected representative farmers were carried out. Key informant interviews and focus group discussions were used for global confirmatory investigation of survey data. Socio-demographic data and indigenous knowledge on the farmer uses of banana and plantain diversity, such as cultural practices, origin, and availability of banana and plantain planting materials, and the constraints and criteria of varietal preference cited by farmers were ranked.

Results

Eighty-seven locally recognized cultivars were found: 73 of banana and 14 of plantain groups. The most popular cultivars were Sotoumon (banana) (52.94%), Aloga (plantain) (41.17%), Planta (banana) (33.33%), and Adjangan (plantain) (27.45%). Of the eleven production constraints identified, the main biotic challenges were banana weevil Cosmopolites sordidus Germar and banana bunchy top virus (BBTV), while abiotic problems were drought and the wind. Some local varieties like Amandan, Assonwonnou, Coleti, and Ninkouin are extremely rare owing to agronomic and economic preference perceptions.

Conclusion and implications

This study provides a baseline for banana diversity in Benin and the West African region and entry points for biological characterization and production improvement. This would enable the exploitation of this resource for plant breeding towards biotic and abiotic challenges facing banana production.
  相似文献   

15.

Background

Cultivated bananas are large, vegetatively-propagated members of the genus Musa. More than 1,000 cultivars are grown worldwide and they are major economic and food resources in numerous developing countries. It has been suggested that cultivated bananas originated from the islands of Southeast Asia (ISEA) and have been developed through complex geodomestication pathways. However, the maternal and parental donors of most cultivars are unknown, and the pattern of nucleotide diversity in domesticated banana has not been fully resolved.

Methodology/Principal Findings

We studied the genetics of 16 cultivated and 18 wild Musa accessions using two single-copy nuclear (granule-bound starch synthase I, GBSS I, also known as Waxy, and alcohol dehydrogenase 1, Adh1) and two chloroplast (maturase K, matK, and the trnL-F gene cluster) genes. The results of phylogenetic analyses showed that all A-genome haplotypes of cultivated bananas were grouped together with those of ISEA subspecies of M. acuminata (A-genome). Similarly, the B- and S-genome haplotypes of cultivated bananas clustered with the wild species M. balbisiana (B-genome) and M. schizocarpa (S-genome), respectively. Notably, it has been shown that distinct haplotypes of each cultivar (A-genome group) were nested together to different ISEA subspecies M. acuminata. Analyses of nucleotide polymorphism in the Waxy and Adh1 genes revealed that, in comparison to the wild relatives, cultivated banana exhibited slightly lower nucleotide diversity both across all sites and specifically at silent sites. However, dramatically reduced nucleotide diversity was found at nonsynonymous sites for cultivated bananas.

Conclusions/Significance

Our study not only confirmed the origin of cultivated banana as arising from multiple intra- and inter-specific hybridization events, but also showed that cultivated banana may have not suffered a severe genetic bottleneck during the domestication process. Importantly, our findings suggested that multiple maternal origins and a reduction in nucleotide diversity at nonsynonymous sites are general attributes of cultivated bananas.  相似文献   

16.
Falk DE 《Génome》2010,53(11):982-991
Most breeding programs develop elite genotypes that are well adapted to the normal range of environmental conditions in the target production region. These elite lines have similar essential alleles for desirable end use characteristics, agronomics, disease resistance, and adaptation in the target region. The genetic makeup of these elite lines is complex. Intermating among the elite lines will often produce new variability through recombination with minimal risk of introducing new undesirable features, and is the source of most new cultivars. Eventually, this variation will be exhausted and new alleles must be introduced into the elite breeding population. Introducing desirable alleles from exotic germplasm may "pollute" the elite gene pool with undesirable alleles. Exotic germplasm may also disrupt essential allele combinations for adaptation, quality, and agronomic performance. New desirable alleles from exotic germplasm can be introgressed into an elite population in a systematic way through limited backcrossing with a minimal disturbance to the finely tuned elite background. Combining recurrent selection within elite germplasm with a systematic introgression from exotic germplasm in the recurrent introgressive population enrichment (RIPE) system has created an open-ended, continually improving, and sustainable elite population breeding system, which is simple, effective, and a regular source of new cultivars.  相似文献   

17.
Barley used for malting is a fine-tuned organism, and it requires breeding within narrow gene pools for realistic cultivar enhancement. Significant phenotypic advance within such narrow gene pools has been achieved and the necessary genetic variability for breeding progress has been documented, but it was not well understood. This study was conducted to further characterize detectable genetic variability present within a select set of four closely related malting barley cultivars using three types of molecular markers: RFLP, PCR-RAPD and AFLP. The markers that identified polymorphism among the select malting cultivars tended to link with each other and to map in chromosomal regions associated with quantitative trait loci (QTLs) for agronomic and malting quality traits that differed among the four cultivars. Although RFLPs identified the least amount of polymorphism, the differences detected by the RFLPs best fit the chronology of the cultivars. These results indicate that a large amount of the genetic variability necessary for cultivar improvement may have originally been present in the breeding gene pool, but does not rule out de novo variation. Study of the populations from crosses within this narrow germplasm is needed to further elucidate the basis of the phenotypic variability found among these select barley cultivars.  相似文献   

18.
 RAPD markers and agronomic traits were used to determine the genetic relationships among 32 breeding lines of melon belonging to seven varietal types. Most of the breeding lines were Galia and Piel de Sapo genotypes, which are currently being used in breeding programmes to develop new hybrid combinations. A total of 115 polymorphic reliable bands from 43 primers and 24 agronomic traits were scored for genetic distance calculations and cluster analysis. A high concordance between RAPDs and agronomic traits was observed when genetic relationships among lines were assessed. In addition, RAPD data were highly correlated with the pedigree information already known for the lines and revealed the existence of two clusters for each varietal type that comprised the lines sharing similar agronomic features. These groupings were consistent with the development of breeding programmes trying to generate two separate sets of parental lines for hybrid production. Nevertheless, the performance of certain hybrids indicated that RAPDs were more suitable markers than agronomic traits in predicting genetic distance among the breeding lines analysed. The employment of RAPDs as molecular markers both in germplasm management and improvement, as well as in the selection of parental lines for the development of new hybrid combinations, is discussed. Received: 25 July 1997 / Accepted: 6 October 1997  相似文献   

19.

Background  

Bananas and plantains (Musa spp.) are grown in more than a hundred tropical and subtropical countries and provide staple food for hundreds of millions of people. They are seed-sterile crops propagated clonally and this makes them vulnerable to a rapid spread of devastating diseases and at the same time hampers breeding improved cultivars. Although the socio-economic importance of bananas and plantains cannot be overestimated, they remain outside the focus of major research programs. This slows down the study of nuclear genome and the development of molecular tools to facilitate banana improvement.  相似文献   

20.
There is an urgent need to identify or to produce ‘Black Sigatoka’ diseasetolerant or -resistant cooking and dessert bananas. Since bananas are perhaps the most conspicuously sterile of all cultivated fruits, breeding of resistant stock is fraught with great difficulties. An overview is provided of the potential value that may be derived from the use of aseptic culture techniques for generating and/or multiplying specific pathogen-tolerant clones. Special emphasis is given to the principles underlying various strategies and to the several levels of sophisticated methods presently available or that still need to be further developed before substantive practical benefits accrue. While the stance adopted in this paper is conservative, so-called tissue culture approaches to banana breeding and improvement may well serve as a model not only forMusa but for other recalcitrant crop plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号