首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.

Background

Preeclampsia (PE) is characterized by increased lipid oxidation and diminished antioxidant capacity, while intrauterine growth restriction (IUGR) is characterized by impaired invasion of the extravillous trophoblast. Vascular endothelial growth factor (VEGF) has been reported to be altered in preeclampsia. A relationship between VEGF and nuclear factor erythroid 2-related factor-2 (Nrf2) has been shown in vitro, where VEGF prevents oxidative damage via activation of the Nrf2 pathway. In this study the expression of Nrf2, VEGF and 4-hydroxynonenal (4-HNE), was determined in interstitial and endovascular/intramural extravillous trophoblast (EVT) in normal pregnancies and those complicated by severe early onset IUGR associated with preeclampsia IUGR/PE.

Materials and Methods

Full-thickness uterine tissues derived from caesarean hysterectomies performed in 5 healthy normotensive women delivering term infants and 6 women with severe early onset IUGR with preeclampsia (29–34 weeks gestation) were analyzed. Interstitial and endovascular extravillous trophoblast were quantified after immunohistochemical staining of paraffin sections using antibodies against Nrf2, 4-HNE, VEGF, and cytokeratin 7.

Results

Uterine tissues from women suffering from severe early onset IUGR/PE were characterized by reduced invasion of extravillous trophoblast into the endometrial and myometrial segments of spiral arteries in the placental bed. Extravillous trophoblast showed an increased cytoplasmic expression of Nrf2 and 4-HNE in IUGR/PE cases. The increased expression of Nrf2 in cases of IUGR/PE was associated with decreased expression of VEGF in these cells compared to controls.

Conclusion

Our data suggests that besides villous cytotrophoblast, also the extravillous trophoblast is a source of Nrf2-dependent genes. VEGF deficiency may cause higher oxidative stress in extravillous trophoblast in cases with IUGR/PE. The resulting reduced basal defence against oxidative stress and the higher vulnerability to oxidative damage may play a role in the limited trophoblast invasion into spiral arteries in cases suffering from severe early onset IUGR/PE.  相似文献   

2.
3.
4.
5.
6.
动脉粥样硬化、糖尿病、慢性肾功能衰竭和先兆子痫等血管疾病时活性氧(reactive oxygen species,ROS)生成增加,容易导致内皮依赖性血管舒张功能的损害和血管损伤,而细胞可以诱导多种编码Ⅱ相解毒酶和抗氧化蛋白的基因表达,从而减轻ROS和亲电子物质介导的细胞损伤。一个被称为抗氧化反应元件(antioxidant response element,ARE)或亲电子反应元件(electrophile response element,EpRE)的顺式转录调控元件,可以介导诸如亚铁血红素加氧酶1、γ-谷氨酰半胱氨酸合成酶、硫氧还蛋白还原酶、谷胱甘肽-S转移酶和NAD(P)H:苯醌氧化还原酶等基因的转录。其他抗氧化酶,如超氧化物歧化酶、过氧化氢酶和非酶清除剂(如谷胱甘肽)等也参与ROS的清除。转录因子NF-E2相关因子2(nuclear factor-erythroid 2-related factor 2, Nrf2)是属于Cap‘n’Collar家族的转录因子,具有碱性亮氨酸拉链(basic region-leucine zipper,bZIP),它在ARE介导的抗氧化基因表达中起重要的作用。在正常情况下,Kelch样环氧氯丙烷相关蛋白-1(Kelch-like ECH-associated protein-1,Keapl)与Nrf2耦联,并与肌动蛋白细胞骨架结合被锚定于胞浆,但是在半胱氨酸残基发生氧化的情况下,Nrf2和Keapl解耦联,进入细胞核并与ARE结合,从而激活多种抗氧化基因和Ⅱ相解毒酶基因的转录。蛋白激酶C、丝裂原活化蛋白激酶和磷脂酰肌醇-3激酶参与Nrf2/ARE信号转导的调控。本文综述了有关Nrf2/ARE信号转导通路在血管稳态和动脉硬化、先兆子痫等疾病情况下内皮及平滑肌细胞对抗持续性氧化应激中起的作用。  相似文献   

7.
核转录因子(NF-E2)相关因子2(nuclear factor erythroid 2 related factor 2, Nrf2)是细胞应对外界应激的主要调控因子,通过调控多种靶基因的表达,在生理条件下减轻氧化应激,维持细胞稳态。其上游受多种因素调控,包括氧化与亲电应激、外界营养状态、细胞内代谢中间产物和能量状态等。在肿瘤细胞中,异常活跃的Nrf2使其抗氧化能力增强,并且通过介导代谢重编程(metabolic reprogramming),促进肿瘤细胞增殖和生长。Keap1 (Kelch-like ECH-associated protein 1)是氧化和亲电应激感受器,通过募集泛素降解系统,对Nrf2的活性起主要调控作用。本文介绍Keap1依赖与非依赖条件下Nrf2的活化途径,着重介绍在肿瘤中Nrf2的异常活化,以及如何调控代谢重编程进而调节肿瘤细胞的合成代谢,最终促进肿瘤的进展。  相似文献   

8.
9.
10.
阿尔茨海默病(Alzheimer's disease,AD)是最常见的神经系统变性疾病,主要病理特征为细胞外老年斑(senile plaques,SP)和细胞内神经原纤维缠结(neurofibrillary tangles,NFT)形成.但其发病机制不清,涉及多种病理学变化如炎症反应、氧化应激、线粒体功能障碍、细胞凋亡以及突触功能障碍等.核因子E2相关因子2(nuclear factor erythroid 2-related factor 2,Nrf2)是经典的调控机体抗氧化应激反应的核转录因子.Nrf2激活后诱导抗氧化蛋白的表达,提高机体的抗氧化应激能力.随着Nrf2抗氧化应激作用研究的深入,发现Nrf2不仅能够通过抗氧化应激延缓AD的发生发展,且在AD的病理性沉积物的清除、抗炎、抗凋亡、神经营养等方面扮演着重要的角色.近年来,由于多种针对单一靶点的抗AD药物临床试验的失败,有学者提出Nrf2可能是实现AD多靶点疗法的重要因子.因此,本文对Nrf2在AD中的研究现状做一综述,为寻找治疗AD潜在的生物学靶点提供理论依据.  相似文献   

11.
12.
The human placenta provides life support for the developing foetus, and a healthy placenta is a prerequisite to a healthy start to life. Placental tissue is subject to oxidative stress which can lead to pathological conditions of pregnancy such as preeclampsia, preterm labour and intrauterine growth restriction. Up-regulation of endogenous anti-oxidants may alleviate placental oxidative stress and provide a therapy for these complications of pregnancy. In this study, selenium supplementation, as inorganic sodium selenite (NaSel) or organic selenomethionine (SeMet), was used to increase the protein production and cellular activity of the important redox active proteins glutathione peroxidase (GPx) and thioredoxin reductase (Thx-Red). Placental trophoblast cell lines, BeWo, JEG-3 and Swan-71, were cultured in various concentrations of NaSel or SeMet for 24 h and cell extracts prepared for western blots and enzyme assays. Rotenone and antimycin were used to stimulate mitochondrial reactive oxygen species (ROS) production and induce apoptosis. Trophoblast cells supplemented with 100 nM NaSel and 500 nM SeMet exhibited significantly enhanced expression and activity of both GPx and Thx-Red. Antimycin and rotenone were found to generate ROS when measured by 2′,7′-dichlorofluorescein diacetate (DCFDA) assay, and selenium supplementation was shown to reduce ROS production in a dose-dependent manner. Rotenone, 100 μM treatment for 4 h, caused trophoblast cell apoptosis as evidenced by increased Annexin V binding and decreased expression of Bcl-2. In both assays of apoptosis, selenium supplementation was able to prevent apoptosis, preserve Bcl-2 expression and protect trophoblast cells from mitochondrial oxidative stress. This data suggests that selenoproteins such as GPx and Thx-Red have an important role in protecting trophoblast cells from mitochondrial oxidative stress and that selenium supplementation may be important in treating some placental pathologies.  相似文献   

13.
14.
Stroke involves numerous pathophysiological processes and oxidative stress is considered as a main cellular event in its pathogenesis. The nuclear factor erythroid-2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway plays a key role in inducing phase II detoxifying enzymes and antioxidant proteins and is now considered as a interesting therapeutic target for the treatment of stroke. The objective of this study is to investigate the protective effect of Gualou Guizhi granule (GLGZG) against oxidative stress and explore the protective mechanism of the Nrf2/ARE pathway. In vivo, administration of GLGZG in a rat model of focal cerebral ischemia significantly suppressed oxidative injury by increasing the activity of superoxide dismutase and glutathione level and decreasing reactive oxygen species and malondialdehyde levels. Western blot analysis showed that GLGZG induced nuclear translocation of Nrf2, and combined with real-time PCR results, which indicated that GLGZG up-regulated the Nrf2/ARE pathway. In addition, in cultured PC12 cells, GLGZG protected against H2O2 induced oxidative injury and activated the Nrf2/ARE pathway. All the results demonstrated that GLGZG in the management of cerebral ischemia and H2O2 induced oxidative injury may be associated with activation of Nrf2/ARE signaling pathway.  相似文献   

15.
16.
It is well known that atherosclerosis occurs geographically at branch points where disturbed flow predisposes to the development of plaque via triggering of oxidative stress and inflammatory reactions. In this study, we found that disturbed flow activated anti-oxidative reactions via up-regulating heme oxygenase 1 (HO-1) in an X-box-binding protein 1 (XBP1) and histone deacetylase 3 (HDAC3)-dependent manner. Disturbed flow concomitantly up-regulated the unspliced XBP1 (XBP1u) and HDAC3 in a VEGF receptor and PI3K/Akt-dependent manner. The presence of XBP1 was essential for the up-regulation of HDAC3 protein. Overexpression of XBP1u and/or HDAC3 activated Akt1 phosphorylation, Nrf2 protein stabilization and nuclear translocation, and HO-1 expression. Knockdown of XBP1u decreased the basal level and disturbed flow-induced Akt1 phosphorylation, Nrf2 stabilization, and HO-1 expression. Knockdown of HDAC3 ablated XBP1u-mediated effects. The mammalian target of rapamycin complex 2 (mTORC2) inhibitor, AZD2014, ablated XBP1u or HDAC3 or disturbed flow-mediated Akt1 phosphorylation, Nrf2 nuclear translocation, and HO-1 expression. Neither actinomycin D nor cycloheximide affected disturbed flow-induced up-regulation of Nrf2 protein. Knockdown of Nrf2 abolished XBP1u or HDAC3 or disturbed flow-induced HO-1 up-regulation. Co-immunoprecipitation assays demonstrated that XBP1u physically bound to HDAC3 and Akt1. The region of amino acids 201 to 323 of the HDAC3 protein was responsible for the binding to XBP1u. Double immunofluorescence staining revealed that the interactions between Akt1 and mTORC2, Akt1 and HDAC3, Akt1 and XBP1u, HDAC3, and XBP1u occurred in the cytosol. Thus, we demonstrate that XBP1u and HDAC3 exert a protective effect on disturbed flow-induced oxidative stress via up-regulation of mTORC2-dependent Akt1 phosphorylation and Nrf2-mediated HO-1 expression.  相似文献   

17.
Nrf2 plays a critical role in the regulation of cellular oxidative stress. MEK-ERK activation has been shown to be one of the major pathways resulting in the activation of Nrf2 and induction of Nrf2 downstream targets, including phase II detoxifying/antioxidant genes in response to oxidative stress and xenobiotics. In this study, IQGAP1 (IQ motif-containing GTPase-activating protein 1), a new Nrf2 interaction partner that we have published previously, was found to modulate MEK-ERK-mediated Nrf2 activation and induction of phase II detoxifying/antioxidant genes. Nrf2 binds directly to the IQ domain (amino acids 699–905) of IQGAP1. Knockdown of IQGAP1 significantly attenuated phenethyl isothiocyanate- or MEK-mediated activation of the MEK-ERK-Nrf2 pathway. Knockdown of IQGAP1 also attenuated MEK-mediated increased stability of Nrf2, which in turn was associated with a decrease in the nuclear translocation of Nrf2 and a decrease in the expression of phase II detoxifying/antioxidant genes. In the aggregate, these results suggest that IQGAP1 may play an important role in the MEK-ERK-Nrf2 signaling pathway.  相似文献   

18.
19.
20.
INrf2-Nrf2 proteins are sensors of chemical/radiation stress. Nrf2, in response to stresses, is released from INrf2. Nrf2 is translocated into the nucleus where it binds to the antioxidant response element and coordinately activates the expression of a battery of genes that protect cells against oxidative and electrophilic stress. An autoregulatory loop between INrf2 and Nrf2 regulates their cellular abundance. Nrf2 activates INrf2 gene expression, and INrf2 serves as an adapter for degradation of Nrf2. In this report, we demonstrate that mutation of tyrosine 141 in bric-a-bric, tramtrack, broad complex domain to alanine rendered INrf2 unstable and nonfunctional. INrf2Y141A mutant degraded rapidly as compared with wild type INrf2, although it could dimerize and bind Nrf2. De novo synthesized INrf2 protein was phosphorylated at tyrosine 141. Tyrosine 141-phosphorylated INrf2 was highly stable. Treatment with hydrogen peroxide, which is an oxidizing agent, led to dephosphorylation of INrf2Y141, resulting in rapid degradation of INrf2. This resulted in stabilization of Nrf2 and activation of ARE-mediated gene expression. These results demonstrate that stress-induced dephosphorylation of tyrosine 141 is a novel mechanism in Nrf2 activation and cellular protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号