首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a sensitive method to detect the opening of SecA-dependent, protein-conducting channels in Xenopus oocytes. In this study, we determined the ionic current activities of the SecA-dependent channel from membrane vesicles depleted of SecYEG. We found that these SecYEG-depleted membranes produced SecA-dependent ionic currents in the oocytes, as did membranes containing SecYEG. However, reconstituted membranes depleted of SecYEG required higher concentrations of SecA to elicit ionic currents like those in membranes containing SecYEG. In contrast to membranes containing SecYEG, the proofreading capacity of signal peptides was lost for those membranes lacking SecYEG. These findings are consistent with loss of signal peptide specificity in channel activity from membranes of SecY suppressor or SecY plug domain mutants. The signal peptide specificity of the reconstituted membranes, like SecA-liposomes, can be restored by the addition of SecYEG proteoliposomes. On the other hand, the channel activity efficiency of reconstituted membranes was fully restored, while SecA-liposomes could only be partially enhanced by the addition of SecYEG, indicating that, in addition to SecYEG, other membrane proteins contribute to the efficiency of channel activity. The SecA-dependent channels in membranes that lacked SecYEG also lost ion selectivity to monovalent cations but retained selective permeability to large anions. Thus, the electrophysiological evidence presented here indicates that SecYEG is not obligatory for the channel activity of Escherichia coli membranes, as previously shown for protein translocation, and that SecYEG is important for maintenance of the efficiency and specificity of SecA-dependent channels.  相似文献   

2.
细菌细胞中,三分之一的蛋白质是在合成后被转运到细胞质外才发挥功能的.其中大多数蛋白是通过Sec途径(即分泌途径secretion pathway)进行跨膜运动的.Sec转运酶是一个多组分的蛋白质复合体,膜蛋白三聚体SecYEG及水解ATP的动力蛋白SecA构成了Sec转运酶的核心.整合膜蛋白SecD,SecF和vajC形成了一个复合体亚单位,可与SecYEG相连并稳定SecA蛋白的膜结合形式.SecB是蛋白质转运中的伴侣分子,可以和很多蛋白质前体结合.SecM是由位于secA基因上游的secM基因编码的,可调节SecA蛋白的合成量,维持细胞在不同环境条件下的正常生长.新生肽链的信号肽被高度保守的SRP特异性识别.伴侣分子SecB通过与细胞膜上的SecA二聚体特异性结合将蛋白质前体引导至Sec转运途径,起始转运过程.结合蛋白质前体的SecA与组成转运通道的SecYEG复合体具有较高的亲和性.SecA经历插入和脱离细胞内膜SecYEG通道的循环,为转运提供所需的能量,每一次循环可推动20多个氨基酸的连续跨膜运动.  相似文献   

3.
The Sec-dependent protein translocation pathway promotes the transport of proteins into or across the bacterial plasma membrane. SecA ATPase has been shown to be a nanomotor that associates with its protein cargo as well as the SecYEG channel complex and to undergo ATP-driven cycles of membrane insertion and retraction that promote stepwise protein translocation. Previous studies have shown that both the 65-kDa N-domain and 30-kDa C-domain of SecA appear to undergo such membrane cycling. In the present study we performed in vivo sulfhydryl labeling of an extensive collection of monocysteine secA mutants under topologically specific conditions to identify regions of SecA that are accessible to the trans side of the membrane in its membrane-integrated state. Our results show that distinct regions of five of six SecA domains were labeled under these conditions, and such labeling clusters to a single face of the SecA structure. Our results demarcate an extensive face of SecA that interacts with SecYEG and is in fluid contact with the protein-conducting channel. The observed domain-specific labeling patterns should also provide important constraints on model building efforts in this dynamic system.  相似文献   

4.
Protein translocation across the bacterial cytoplasmic membrane is an essential process catalyzed by the Sec translocase, which in its minimal form consists of the protein-conducting channel SecYEG, and the motor ATPase SecA. SecA binds via its positively charged N-terminus to membranes containing anionic phospholipids, leading to a lipid-bound intermediate. This interaction induces a conformational change in SecA, resulting in a high-affinity association with SecYEG, which initiates protein translocation. Here, we examined the effect of anionic lipids on the SecA-SecYEG interaction in more detail, and discovered a second, yet unknown, anionic lipid-dependent event that stimulates protein translocation. Based on molecular dynamics simulations we identified an anionic lipid-enriched region in vicinity of the lateral gate of SecY. Here, the anionic lipid headgroup accesses the lateral gate, thereby stabilizing the pre-open state of the channel. The simulations suggest flip-flop movement of phospholipid along the lateral gate. Electrostatic contribution of the anionic phospholipids at the lateral gate may directly stabilize positively charged residues of the signal sequence of an incoming preprotein. Such a mechanism allows for the correct positioning of the entrant peptide, thereby providing a long-sought explanation for the role of anionic lipids in signal sequence folding during protein translocation.  相似文献   

5.
The Sec machinery (or translocase) provides a major pathway of protein translocation from the cytosol across the cytoplasmic membrane in bacteria. The SecA ATPase interacts dynamically with the SecYEG integral membrane components to drive the transmembrane movement of newly synthesized preproteins. This pathway is also used for integration of some membrane proteins and the Sec translocase interacts with other cellular components to achieve its cellular roles. The detailed protein interactions involved in these processes are being actively studied and a structural understanding of the protein-conducting channel has started to emerge.  相似文献   

6.
The translocon is a membrane-embedded protein assembly that catalyzes protein movement across membranes. The core translocon, the SecYEG complex, forms oligomers, but the protein-conducting channel is at the center of the monomer. Defining the properties of the SecYEG protomer is thus crucial to understand the underlying function of oligomerization. We report here the reconstitution of a single SecYEG complex into nano-scale lipid bilayers, termed Nanodiscs. These water-soluble particles allow one to probe the interactions of the SecYEG complex with its cytosolic partner, the SecA dimer, in a membrane-like environment. The results show that the SecYEG complex triggers dissociation of the SecA dimer, associates only with the SecA monomer and suffices to (pre)-activate the SecA ATPase. Acidic lipids surrounding the SecYEG complex also contribute to the binding affinity and activation of SecA, whereas mutations in the largest cytosolic loop of the SecY subunit, known to abolish the translocation reaction, disrupt both the binding and activation of SecA. Altogether, the results define the fundamental contribution of the SecYEG protomer in the translocation subreactions and illustrate the power of nanoscale lipid bilayers in analyzing the dynamics occurring at the membrane.  相似文献   

7.
Protein translocation in Escherichia coli requires protein-conducting channels in cytoplasmic membranes to allow precursor peptides to pass through with adenosine triphosphate (ATP) hydrolysis. Here, we report a novel, sensitive method that detects the opening of the SecA-dependent protein-conducting channels at the nanogram level. E. coli inverted membrane vesicles were injected into Xenopus oocytes, and ionic currents were recorded using the two-electrode voltage clamp. Currents were observed only in the presence of E. coli SecA in conjunction with E. coli membranes. Observed currents showed outward rectification in the presence of KCl as permeable ions and were significantly enhanced by coinjection with the precursor protein proOmpA or active LamB signal peptide. Channel activity was blockable with sodium azide or adenylyl 5'-(beta,gamma-methylene)-diphosphonate, a nonhydrolyzable ATP analogue, both of which are known to inhibit SecA protein activity. Endogenous oocyte precursor proteins also stimulated ion current activity and can be inhibited by puromycin. In the presence of puromycin, exogenous proOmpA or LamB signal peptides continued to enhance ionic currents. Thus, the requirement of signal peptides and ATP hydrolysis for the SecA-dependent currents resembles biochemical protein translocation assay with E. coli membrane vesicles, indicating that the Xenopus oocyte system provides a sensitive assay to study the role of Sec and precursor proteins in the formation of protein-conducting channels using electrophysiological methods.  相似文献   

8.
The major route for protein export or membrane integration in bacteria occurs via the Sec-dependent transport apparatus. The core complex in the inner membrane, consisting of SecYEG, forms a protein-conducting channel, while the ATPase SecA drives translocation of substrate across the membrane. The SecYEG complex from Escherichia coli was overexpressed, purified and crystallized in two dimensions. A 9 A projection structure was calculated using electron cryo-microscopy. The structure exhibits P12(1) symmetry, having two asymmetric units inverted with respect to one another in the unit cell. The map shows elements of secondary structure that appear to be transmembrane helices. The crystallized form of SecYEG is too small to comprise the translocation channel and does not contain a large pore seen in other studies. In detergent solution, the SecYEG complex displays an equilibrium between monomeric and tetrameric forms. Our results therefore indicate that, unlike other known channels, the SecYEG complex can exist as both an assembled channel and an unassembled smaller unit, suggesting that transitions between the two states occur during a functional cycle.  相似文献   

9.
SecA, the ATPase of Sec translocase, mediates the post-translational translocation of preprotein through the protein-conducting channel SecYEG in the bacterial inner membrane. Here we report the structures of Escherichia coli Sec intermediates during preprotein translocation as visualized by electron microscopy to probe the oligomeric states of SecA during this process. We found that the translocase holoenzyme is symmetrically assembled by SecA and SecYEG on proteoliposomes, whereas the translocation intermediate 31 (I31) becomes asymmetric because of the presence of preprotein. Moreover, SecA is a dimer in these two translocation complexes. This work also shows surface topological changes in the components of translocation intermediates by immunogold labeling. The channel entry for preprotein translocation was found at the center of the I31 structures. Our results indicate that the presence of preprotein introduces asymmetry into translocation intermediates, while SecA remains dimeric during the translocation process.  相似文献   

10.
Bacterial protein secretion is catalysed by the SecYEG protein-conducting channel complexed with the SecA ATPase motor. To gain insight into the SecA-SecYEG interaction we used peptide arrays, thermodynamic quantification, mutagenesis and functional assays. Our data reveal that: (i) SecA binds with low affinity on several, peripheral, exposed SecYEG sites. This largely electrostatic association is modulated by temperature and nucleotides. (ii) Binding sites cluster in five major binding 'regions': three that are exclusively cytoplasmic and two that reach the periplasm. (iii) Both the N-terminal and c-terminal regions of SecA participate in binding interactions and share some sites. (iv) Several of these sites are essential for translocase catalysis. Our data provide residue-level dissection of the SecYEG-SecA interaction. Two models of assembly of SecA on dimeric SecYEG are discussed.  相似文献   

11.
Protein translocation across the bacterial cytoplasmic membrane has been studied extensively in Escherichia coli. The identification of the components involved and subsequent reconstitution of the purified translocation reaction have defined the minimal constituents that allowed extensive biochemical characterization of the so-called translocase. This functional enzyme complex consists of the SecYEG integral membrane protein complex and a peripherally bound ATPase, SecA. Under translocation conditions, four SecYEG heterotrimers assemble into one large protein complex, forming a putative protein-conducting channel. This tetrameric arrangement of SecYEG complexes and the highly dynamic SecA dimer together form a proton-motive force- and ATP-driven molecular machine that drives the stepwise translocation of targeted polypeptides across the cytoplasmic membrane. Recent findings concerning the translocase structure and mechanism of protein translocation are discussed and shine new light on controversies in the field.  相似文献   

12.
In Escherichia coli, secretory proteins (preproteins) are translocated across the cytoplasmic membrane by the Sec system composed of a protein-conducting channel, SecYEG, and an ATP-dependent motor protein, SecA. After binding of the preprotein to SecYEG-bound SecA, cycles of ATP binding and hydrolysis by SecA are thought to drive the stepwise translocation of the preprotein across the membrane. To address how the length of a preprotein substrate affects the SecA-driven translocation process, we constructed derivatives of the precursor of the outer membrane protein A (proOmpA) with 2, 4, 6, and 8 in-tandem repeats of the periplasmic domain. With increasing polypeptide length, an increasing delay in the time before full-length translocation was observed, but the translocation rate expressed as amino acid translocation per minute remained constant. These data indicate that in the ATP-dependent reaction, SecA drives a constant rate of preprotein translocation consistent with a stepping mechanism of translocation.  相似文献   

13.
The two major components of the Eubacteria Sec-dependent protein translocation system are the heterotrimeric channel-forming component SecYEG and its binding partner, the SecA ATPase nanomotor. Once bound to SecYEG, the preprotein substrate, and ATP, SecA undergoes ATP-hydrolytic cycles that drive the stepwise translocation of proteins. Although a previous site-directed in vivo photocross-linking study (Mori, H., and Ito, K. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 16159-16164) elucidated residues of SecY needed for interaction with SecA, no reciprocal study for SecA protein has been reported to date. In the present study we mapped residues of SecA that interact with SecY or SecG utilizing this approach. Our results show that distinct domains of SecA on two halves of the molecule interact with two corresponding SecY partners as well as with the central cytoplasmic domain of SecG. Our data support the in vivo relevance of the Thermotoga maritima SecA·SecYEG crystal structure that visualized SecYEG interaction for only one-half of SecA as well as previous studies indicating that SecA normally binds two molecules of SecYEG.  相似文献   

14.
Protein translocation across the cytoplasmic membrane is an essential process in all bacteria. The Sec system, comprising at its core an ATPase, SecA, and a membrane channel, SecYEG, is responsible for the majority of this protein transport. Recently, a second parallel Sec system has been described in a number of gram-positive species. This accessory Sec system is characterized by the presence of a second copy of the energizing ATPase, SecA2; where it has been studied, SecA2 is responsible for the translocation of a subset of Sec substrates. In common with many pathogenic gram-positive species, Clostridium difficile possesses two copies of SecA. Here, we describe the first characterization of the C. difficile accessory Sec system and the identification of its major substrates. Using inducible antisense RNA expression and dominant-negative alleles of secA1 and secA2, we demonstrate that export of the S-layer proteins (SLPs) and an additional cell wall protein (CwpV) is dependent on SecA2. Accumulation of the cytoplasmic precursor of the SLPs SlpA and other cell wall proteins was observed in cells expressing dominant-negative secA1 or secA2 alleles, concomitant with a decrease in the levels of mature SLPs in the cell wall. Furthermore, expression of either dominant-negative allele or antisense RNA knockdown of SecA1 or SecA2 dramatically impaired growth, indicating that both Sec systems are essential in C. difficile.  相似文献   

15.
Most bacterial secretory proteins pass across the cytoplasmic membrane via the translocase, which consists of a protein-conducting channel SecYEG and an ATP-dependent motor protein SecA. The ancillary SecDF membrane protein complex promotes the final stages of translocation. Recent years have seen a major advance in our understanding of the structural and biochemical basis of protein translocation, and this has led to a detailed model of the translocation mechanism.  相似文献   

16.
Protein translocation in Escherichia coli requires protein-conducting channels in cytoplasmic membranes to allow precursor peptides to pass through with adenosine triphosphate (ATP) hydrolysis. Here, we report a novel, sensitive method that detects the opening of the SecA-dependent protein-conducting channels at the nanogram level. E. coli inverted membrane vesicles were injected into Xenopus oocytes, and ionic currents were recorded using the two-electrode voltage clamp. Currents were observed only in the presence of E. coli SecA in conjunction with E. coli membranes. Observed currents showed outward rectification in the presence of KCl as permeable ions and were significantly enhanced by coinjection with the precursor protein proOmpA or active LamB signal peptide. Channel activity was blockable with sodium azide or adenylyl 5′-(β,γ-methylene)-diphosphonate, a nonhydrolyzable ATP analogue, both of which are known to inhibit SecA protein activity. Endogenous oocyte precursor proteins also stimulated ion current activity and can be inhibited by puromycin. In the presence of puromycin, exogenous proOmpA or LamB signal peptides continued to enhance ionic currents. Thus, the requirement of signal peptides and ATP hydrolysis for the SecA-dependent currents resembles biochemical protein translocation assay with E. coli membrane vesicles, indicating that the Xenopus oocyte system provides a sensitive assay to study the role of Sec and precursor proteins in the formation of protein-conducting channels using electrophysiological methods.  相似文献   

17.
Tang Y  Pan X  Chen Y  Tai PC  Sui SF 《PloS one》2011,6(1):e16498
The Sec translocase mediates the post-translational translocation of a number of preproteins through the inner membrane in bacteria. In the initiatory translocation step, SecB targets the preprotein to the translocase by specific interaction with its receptor SecA. The latter is the ATPase of Sec translocase which mediates the post-translational translocation of preprotein through the protein-conducting channel SecYEG in the bacterial inner membrane. We examined the structures of Escherichia coli Sec intermediates in solution as visualized by negatively stained electron microscopy in order to probe the oligomeric states of SecA during this process. The symmetric interaction pattern between the SecA dimer and SecB becomes asymmetric in the presence of proOmpA, and one of the SecA protomers predominantly binds to SecB/proOmpA. Our results suggest that during preprotein translocation, the two SecA protomers are different in structure and may play different roles.  相似文献   

18.
Translocation of precursor proteins across the cytoplasmic membrane in bacteria is mediated by a multi-subunit protein complex termed translocase, which consists of the integral membrane heterotrimer SecYEG and the peripheral homodimeric ATPase SecA. Preproteins are bound by the cytosolic molecular chaperone SecB and targeted in a complex with SecA to the translocation site at the cytoplasmic membrane. This interaction with SecYEG allows the SecA/preprotein complex to insert into the membrane by binding of ATP to the high affinity nucleotide binding site of SecA. At that stage, presumably recognition and proofreading of the signal sequence occurs. Hydrolysis of ATP causes the release of the preprotein in the translocation channel and drives the withdrawal of SecA from the membrane-integrated state. Hydrolysis of ATP at the low-affinity nucleotide binding site of SecA converts the protein into a compact conformational state and releases it from the membrane. In the absence of the proton motive force, SecA is able to complete the translocation stepwise by multiple nucleotide modulated cycles. Received: 4 August 1995 / Accepted: 9 October 1995  相似文献   

19.
Protein secretion in bacteria is driven through the ubiquitous SecYEG complex by the ATPase SecA. The structure of SecYEG alone or as a complex with SecA in detergent reveal a monomeric heterotrimer enclosing a central protein channel, yet in membranes it is dimeric. We have addressed the functional significance of the oligomeric status of SecYEG in protein translocation using single molecule and ensemble methods. The results show that while monomers are sufficient for the SecA- and ATP-dependent association of SecYEG with pre-protein, active transport requires SecYEG dimers arranged in the back-to-back conformation. Molecular modeling of this dimeric structure, in conjunction with the new functional data, provides a rationale for the presence of both active and passive copies of SecYEG in the functional translocon.  相似文献   

20.
Dual-color fluorescence-burst analysis (DCFBA) was applied to measure the quaternary structure and high-affinity binding of the bacterial motor protein SecA to the protein-conducting channel SecYEG reconstituted into lipid vesicles. DCFBA is an equilibrium technique that enables the direct observation and quantification of protein-protein interactions at the single molecule level. SecA binds to SecYEG as a dimer with a nucleotide- and preprotein-dependent dissociation constant. One of the SecA protomers binds SecYEG in a salt-resistant manner, whereas binding of the second protomer is salt sensitive. Because protein translocation is salt sensitive, we conclude that the dimeric state of SecA is required for protein translocation. A structural model for the dimeric assembly of SecA while bound to SecYEG is proposed based on the crystal structures of the Thermotoga maritima SecA-SecYEG and the Escherichia coli SecA dimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号