首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli contains two PII-like signal trans-duction proteins, PII and GlnK, involved in nitrogen assimilation. We examined the roles of PII and GlnK in controlling expression of glnALG, glnK and nac during the transition from growth on ammonia to nitrogen starvation and vice versa. The PII protein exclusively controlled glnALG expression in cells adapted to growth on ammonia, but was unable to limit nac and glnK expression under conditions of nitrogen starvation. Conversely, GlnK was unable to limit glnALG expression in cells adapted to growth on ammonia, but was required to limit expression of the glnK and nac promoters during nitrogen starvation. In the absence of GlnK, very high expression of the glnK and nac promoters occurred in nitrogen-starved cells, and the cells did not reduce glnK and nac expression when given ammonia. Thus, one specific role of GlnK is to regulate the expression of Ntr genes during nitrogen starvation. GlnK also had a dramatic effect on the ability of cells to survive nitrogen starvation and resume rapid growth when fed ammonia. After being nitrogen starved for as little as 10 h, cells lacking GlnK were unable to resume rapid growth when given ammonia. In contrast, wild-type cells that were starved immediately resumed rapid growth when fed ammonia. Cells lacking GlnK also showed faster loss of viability during extended nitrogen starvation relative to wild-type cells. This complex phenotype resulted partly from the requirement for GlnK to regulate nac expression; deletion of nac restored wild-type growth rates after ammonia starvation and refeeding to cells lacking GlnK, but did not improve viability during nitrogen starvation. The specific roles of GlnK during nitrogen starvation were not the result of a distinct function of the protein, as expression of PII from the glnK promoter in cells lacking GlnK restored the wild-type phenotypes.  相似文献   

2.
3.
Glutamine synthetase I (GSI) enzyme activity in Streptomyces coelicolor is controlled post-translationally by the adenylyltransferase (GlnE) as in enteric bacteria. Although other homologues of the Escherichia coli Ntr system (glnK, coding for a PII family protein; and glnD, coding for an uridylyltransferase) are found in the S. coelicolor genome, the regulation of the GSI activity was found to be different. The functions of glnK and glnD were analysed by specific mutants. Surprisingly, biochemical assay and two-dimensional PAGE analysis showed that modification of GSI by GlnE occurs normally in all mutant strains, and neither GlnK nor GlnD are required for the regulation of GlnE in response to nitrogen stimuli. Analysis of the post-translational regulation of GlnK in vivo by two-dimensional PAGE and mass spectrometry indicated that it is subject to both a reversible and a non-reversible modification in a direct response to nitrogen availability. The irreversible modification was identified as removal of the first three N-terminal amino acid residues of the protein, and the reversible modification as adenylylation of the conserved tyro-sine 51 residue that is known to be uridylylated in E. coli. The glnD insertion mutant expressing only the N-terminal half of GlnD was capable of adenylylating GlnK, but was unable to perform the reverse deadenylylation reaction in response to excess ammonium. The glnD null mutant completely lacked the ability to adenylylate GlnK. This work provides the first example of a PII protein that is modified by adenylylation, and demonstrates that this reaction is performed by a homologue of GlnD, previously described only as a uridylyltransferase enzyme.  相似文献   

4.
The Amt proteins are high affinity ammonium transporters that are conserved in all domains of life. In bacteria and archaea the Amt structural genes (amtB) are invariably linked to glnK, which encodes a member of the P(II) signal transduction protein family, proteins that regulate many facets of nitrogen metabolism. We have now shown that Escherichia coli AmtB is inactivated by formation of a membrane-bound complex with GlnK. Complex formation is reversible and occurs within seconds in response to micromolar changes in the extracellular ammonium concentration. Regulation is mediated by the uridylylation/deuridylylation of GlnK in direct response to fluctuations in the intracellular glutamine pool. Furthermore under physiological conditions AmtB activity is required for GlnK deuridylylation. Hence the transporter is an integral part of the signal transduction cascade, and AmtB can be formally considered to act as an ammonium sensor. This system provides an exquisitely sensitive mechanism to control ammonium flux into the cell, and the conservation of glnK linkage to amtB suggests that this regulatory mechanism may occur throughout prokaryotes.  相似文献   

5.
6.
7.
8.
In our studies on the regulation of nitrogen metabolism in Gluconacetobacter diazotrophicus, an endophytic diazotroph of sugarcane, three glnB-like genes were identified and their role(s) in the control of nitrogen fixation was studied. Sequence analysis revealed that one P(II) protein-encoding gene, glnB, was adjacent to a glnA gene (encoding glutamine synthetase) and that two other P(II) protein-encoding genes, identified as glnK1 and glnK2, were located upstream of amtB1 and amtB2, respectively, genes which in other organisms encode ammonium (or methylammonium) transporters. Single and double mutants and a triple mutant with respect to the three P(II) protein-encoding genes were constructed, and the effects of the mutations on nitrogenase expression and activity in the presence of either ammonium starvation or ammonium sufficiency were studied. Based on the results presented here, it is suggested that none of the three P(II) homologs is required for nif gene expression, that the GlnK2 protein acts primarily as an inhibitor of nif gene expression, and that GlnB and GlnK1 control the expression of nif genes in response to ammonium availability, both directly and by relieving the inhibition by GlnK2. This model includes novel regulatory features of P(II) proteins.  相似文献   

9.
10.
GlnD is a bifunctional uridylyltransferase/uridylyl-removing enzyme that has a central role in the general nitrogen regulatory system NTR. In enterobacteria, GlnD uridylylates the PII proteins GlnB and GlnK under low levels of fixed nitrogen or ammonium. Under high ammonium levels, GlnD removes UMP from these proteins (deuridylylation). The PII proteins are signal transduction elements that integrate the signals of nitrogen, carbon and energy, and transduce this information to proteins involved in nitrogen metabolism. In Herbaspirillum seropedicae, an endophytic diazotroph isolated from grasses, several genes coding for proteins involved in nitrogen metabolism have been identified and cloned, including glnB, glnK and glnD. In this work, the GlnB, GlnK and GlnD proteins of H. seropedicae were overexpressed in their native forms, purified and used to reconstitute the uridylylation system in vitro. The results show that H. seropedicae GlnD uridylylates GlnB and GlnK trimers producing the forms PII (UMP)(1), PII (UMP)(2) and PII (UMP)(3), in a reaction that requires 2-oxoglutarate and ATP, and is inhibited by glutamine. The quantification of these PII forms indicates that GlnB was more efficiently uridylylated than GlnK in the system used.  相似文献   

11.
12.
The Amt proteins are ammonium transporters that are conserved throughout all domains of life, being found in bacteria, archaea and eukarya. In bacteria and archaea, the Amt structural genes (amtB) are invariably linked to glnK, which encodes a member of the P(II) signal transduction protein family, proteins that regulate enzyme activity and gene expression in response to the intracellular nitrogen status. We have now shown that in Escherichia coli and Azotobacter vinelandii, GlnK binds to the membrane in an AmtB-dependent manner and that GlnK acts as a negative regulator of the transport activity of AmtB. Membrane binding is dependent on the uridylylation state of GlnK and is modulated according to the cellular nitrogen status such that it is maximal in nitrogen-sufficient situations. The membrane sequestration of GlnK by AmtB represents a novel form of signal transduction in which an integral membrane transport protein functions to link the extracellular ammonium concentration to the intracellular responses to nitrogen status. The results also offer new insights into the evolution of P(II) proteins and a rationale for their trigonal symmetry.  相似文献   

13.
14.
15.
16.
17.
18.
Two closely related signal transduction proteins, PII and GlnK, have distinct physiological roles in the regulation of nitrogen assimilation. Here, we examined the physiological roles of PII and GlnK when these proteins were expressed from various regulated or constitutive promoters. The results indicate that the distinct functions of PII and GlnK were correlated with the timing of expression and levels of accumulation of the two proteins. GlnK was functionally converted into PII when its expression was rendered constitutive and at the appropriate level, while PII was functionally converted into GlnK by engineering its expression from the nitrogen-regulated glnK promoter. Also, the physiological roles of both proteins were altered by engineering their expression from the nitrogen-regulated glnA promoter. We hypothesize that the use of two functionally identical PII-like proteins, which have distinct patterns of expression, may allow fine control of Ntr genes over a wide range of environmental conditions. In addition, we describe results suggesting that an additional, unknown mechanism may control the cellular level of GlnK.  相似文献   

19.
Bacteria in the genus Streptomyces are soil-dwelling oligotrophs and important producers of secondary metabolites. Previously, we showed that global messenger RNA expression was subject to a series of metabolic and regulatory switches during the lifetime of a fermentor batch culture of Streptomyces coelicolor M145. Here we analyze the proteome from eight time points from the same fermentor culture and, because phosphate availability is an important regulator of secondary metabolite production, compare this to the proteome of a similar time course from an S. coelicolor mutant, INB201 (ΔphoP), defective in the control of phosphate utilization. The proteomes provide a detailed view of enzymes involved in central carbon and nitrogen metabolism. Trends in protein expression over the time courses were deduced from a protein abundance index, which also revealed the importance of stress pathway proteins in both cultures. As expected, the ΔphoP mutant was deficient in expression of PhoP-dependent genes, and several putatively compensatory metabolic and regulatory pathways for phosphate scavenging were detected. Notably there is a succession of switches that coordinately induce the production of enzymes for five different secondary metabolite biosynthesis pathways over the course of the batch cultures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号