首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Mitochondrial DNA sequence variation can be used to infer honey bee evolutionary relationships. We examined DNA sequence diversity in the cytochrome C oxidase I (COI or Cox1) gene segment of the mitochondrial genome in 112 samples of Apis mellifera from 15 different populations in Turkey. Six novel haplotypes were found for the COI gene segment. There were eight variable sites in the COI gene, although only three were parsimony-informative sites. The mean pairwise genetic distance was 0.3% for the COI gene segment. Neighbor-joining (NJ) trees of the COI gene segment were constructed with the published sequences of A. mellifera haplotypes that are available in GenBank; the genetic variation was compared among the different honeybee haplotypes. The NJ dendogram based on the COI sequences available in GenBank showed that Eastern European races were clustered together, whereas the Mellifera and Iberian haplotypes were clustered far apart. The haplotypes found in this study were clustered together with A. mellifera ligustica and some of the Greek honey bees (accession Nos. GU056169 and GU056170) found in NCBI GenBank database. This study expands the knowledge about the mitochondrial COI region and presents the first comprehensive sequence analysis of this region in Turkish honeybees.  相似文献   

2.
In the present study, relationships among three genera Acontias, Acontophiops, and Typhlosaurus, that comprise the South African limbless lizard subfamily Acontinae, were assessed with partial sequences of the 16S rRNA mitochondrial DNA gene. In addition, relationships within Acontias were further investigated using sequence data from the cytochrome oxidase I gene (COI). Maximum likelihood and maximum parsimony analyses of the 16S rRNA mtDNA data revealed that within this subfamily, Typhlosaurus is basal while Acontophiops and Acontias are sister taxa. Based on the 16S rRNA mtDNA data, the relationships within Acontias placed A. meleagris orientalis as the sister taxon of A. percivali tasmani, with A. m. orientalis lineacauda morph and A. m. meleagrus being the sister taxa to this group. The small-bodied skinks A. lineatus lineatus and A. l. tristis formed a monophyletic group, with the medium-bodied species A. gracilicauda gracilicauda being their sister taxon. Analyses of the COI gene for Acontias place A. m. orientalis as the sister taxon of A. p. tasmani with both A. meleagris meleagris and A. m. orientalis lineacauda being distinct. In contrast to the 16S rRNA mtDNA data, the COI data placed A. g. gracilicauda as the sister taxon to these medium-bodied species; while the subspecies status of the small-bodied taxa A. l. lineatus and A. l. tristis is reaffirmed. Combined analysis of both gene fragments for Acontias taxa recovered the same clades as found using only COI data. Systematic affinities in Acontias are discussed. These results indicate that Acontias is more species rich than previously thought.  相似文献   

3.
Mitochondrial 16S ( approximately 550 bp) and cytochrome oxidase I (COI) ( approximately 700 bp) sequences were utilized as markers to reconstruct a phylogeography for representative populations or biotypes of Bemisia tabaci. 16S sequences exhibited less divergence than COI sequences. Of the 429 characters examined for COI sequences, 185 sites were invariant, 244 were variable and 108 were informative. COI sequence identities yielded distances ranging from less than 1% to greater than 17%. Whitefly 16S sequences of 456 characters were analysed which consisted of 298 invariant sites, 158 variable sites and 53 informative sites. Phylogenetic analyses conducted by maximum parsimony, maximum-likelihood and neighbour-joining methods yielded almost identical phylogenetic reconstructions of trees that separated whiteflies based on geographical origin. The 16S and COI sequence data indicate that the B-biotype originated in the Old World (Europe, Asia and Africa) and is most closely related to B-like variants from Israel and Yemen, with the next closest relative being a biotype from Sudan. These data confirm the biochemical, genetic and behavioural polymorphisms described previously for B. tabaci. The consideration of all global variants of B. tabaci as a highly cryptic group of sibling species is argued.  相似文献   

4.
5.
The phylogenetic position of two putative new species of the collembolan genus Orchesella was investigated by comparison with four other Italian species of the genus using a fragment of the mitochondrial gene encoding for subunit I of cytochrome c oxidase (COI). The gene showed the well-known A + T bias, typical of insect mitochondrial DNA, although A + T content was not as high as that observed in species belonging to more derived insect orders. The large number of variable sites in 3rd codon positions (85.2% variable) suggested that these sites contain significant homoplasy due to multiple hits. Despite the lack of morphological differentiation, the COI portion examined shows remarkable levels of genetic divergence between the putative species and their closest relatives. Phylogenetic analysis suggests that one of the putative new species is related to O. villosa, whereas the other is included in a clade with O. cincta and O. ranzii. The species O. chiantica appears to be related to O. villosa, agreeing with previous allozyme data.  相似文献   

6.
Lv HJ  Huang Y 《动物学研究》2012,33(3):319-328
该研究基于直翅目56种昆虫的COI基因全序列构建了该目部分类群间的系统发育关系,同时也分析了COI基因编码的氨基酸序列构建直翅目系统发育关系的可靠性。将COI序列按照密码子一、二、三位点划分,分别计算PBS(partioned Bremer support)值,评估蛋白质编码基因密码子不同位点的系统发生信号强度。分析结果支持螽亚目和蝗亚目的单系性;剑角蝗科、斑腿蝗科、斑翅蝗科、网翅蝗科和槌角蝗科5科均不是单系群,科间的遗传距离在0.107~0.153之间变化,与其他科相比遗传距离较小,符合将这5科合并为一科(即蝗科)的分类系统,瘤锥蝗科和锥头蝗科归为锥头蝗总科,癞蝗科单独成为一科,这也与Otte(1997)系统的划分一致。根据PBS值的大小推断密码子第三、第一位点对系统树分支的贡献比第二位点大,并且较长的序列含有较多的信息位点。研究也证实将各物种COI基因之间的遗传距离作为直翅目划分科级阶元的工具是可行的。  相似文献   

7.
The Caribbean coral Montastraea annularis has recently been proposed to be a complex of at least three sibling species. To test the validity of this proposal, we sequenced the ITS region of the nuclear ribosomal RNA gene family (ITS-1, 5.8S, and ITS-2), and a portion of the mitochondrial DNA gene cytochrome c oxidase subunit I (COI) from the three proposed species (M. annularis, M. faveolata, and M. franksi) from Florida reefs. The ITS fragment was 665 nucleotides long and had 19 variable sites, of which 6 were parsimony-informative sites. None of these sites was fixed within the proposed species. The COI fragment was 658 nucleotides long with only two sites variable in one individual. Thus, under both the biological species concept and the phylogenetic species concept, the molecular evidence gathered in this study indicates the Montastraea annularis species complex to be a single evolutionary entity as opposed to three distinct species. The three proposed Montastraea species can interbreed, ruling out prezygotic barriers to gene flow (biological species concept), and the criterion of monophyly is not satisfied if hybridization is occurring among taxa (phylogenetic species concept). Received January 20, 1998; accepted September 30, 1998.  相似文献   

8.
Epiperipatus acacioi (Onychophora: Peripatidae) is an endemic species of the Atlantic rainforest in southeastern Brazil, with a restricted known distribution, found only in two nearby areas (Tripuí and Itacolomi). Mitochondrial gene COI sequences of 93 specimens collected across the known range of E. acacioi were used to assess the extant genetic diversity and patterns of genetic structure, as well as to infer the demographic history of this species. We found considerable variability within the populations, even though there has been recent environmental disturbance in these habitats. The samples from the two areas where this species is found showed significantly different COI sequences and constitute two distinct populations [exact test of sample differentiation (P = 0.0008) and pairwise F(ST) analyses (F(ST) = 0.214, P < 0.00001)]. However, there was little genetic differentiation among samples from different sampling sites within populations, suggesting that the potential for dispersal of E. acacioi greater than would have been expected, based on their cryptic behavior and reduced vagility. Mismatch analyses and neutrality tests revealed evidence of recent population expansion processes for both populations, possibly related to variations in the past distribution of this species.  相似文献   

9.
Autotrophic euglenids (Euglenophyceae) are a common and abundant group of microbial eukaryotes in freshwater habitats. They have a limited number of features, which can be observed using light microscopy, thus species identification is often problematic. Establishing a barcode for this group is therefore an important step toward the molecular identification of autotrophic euglenids. Based on the literature, we selected verified species and used a plethora of available methods to validate two molecular markers: COI and 18S rDNA (the whole sequence and three fragments separately) as potential DNA barcodes. Analyses of the COI gene were performed based on the data set of 43 sequences (42 obtained in this study) representing 24 species and the COI gene was discarded as a DNA barcode mainly due to a lack of universal primer sites. For 18S rDNA analyses we used a data set containing 263 sequences belonging to 86 taxonomically verified species. We demonstrated that the whole 18S rDNA is too long to be a useful marker, but from the three shorter analyzed variable regions we recommend variable regions V2V3 and V4 of 18S rDNA as autotrophic euglenid barcodes due to their high efficiency (above 95% and 90%, respectively).  相似文献   

10.
There are more than 47 species of holothurians used for bêche-de-mer production, many of which are locally overfished. With three exceptions, all bêche-de-mer species are Aspidochirotida and species identification of many of these is difficult. We analysed available genetic information and newly generated sequences to determine if genetic barcoding with the mitochondrial COI gene can be used to identify bêche-de-mer species. Although genetic data were available for ~50% of bêche-de-mer species, sufficient information and within-species replication were only available for six species. We generated 96 new COI sequences extending the existing database to cover most common species. COI unambiguously identified most bêche-de-mer species providing a genetic barcode for the identification of known species. In addition, conspecific (1.3%) variation and congeneric (16.9%) divergence were well separated ('barcoding-gap') albeit with a small overlap, which may lead to some error if genetic sampling alone was applied for species discovery. In addition to identification of adults, COI sequences were useful to identify juveniles that are often morphologically different. Sequence data showed that large (deep) and small (shallow) morphotypes of Holothuria atra are the same species, but suggested potential cryptic species within this taxon. For bêche-de-mer, the COI barcode proved useful in species clarification and discovery, but further genetic and taxonomic work is essential for several species. Some bêche-de-mer clades were problematic with morphologically disparate specimens sharing the same barcode. Our study indicated the presence of undescribed species (Bohadschia sp.) and species that constitute separate species in the Indian and Pacific Ocean (e.g. Holothuria fuscogilva).  相似文献   

11.
We investigated the taxonomic status of two sympatric morphospecies of squat lobsters from southern South America (Beagle Channel, Strait of Magellan, and Burdwood Bank), Munida gregaria and Munida subrugosa , by DNA sequence analysis of three mitochondrial (mt)DNA gene fragments [416 bp of 16S rDNA(165), 566 bp of cytochrome c oxidase subunit I(COI) and 418 bp of NADH dehydrogenase subunit 1 (ND1)]; and the nuclear rDNA internal transcribed spacer (ITS) 1 (883–952 bp). We obtained a total of 79 sequences from 32 individuals. The 16S sequences of all M. gregaria and M. subrugosa were invariant and identical, whereas COI and ND1 showed 12 and 15 variable sites, respectively. These polymorphisms were shared between morphospecies. Interspecific Tamura–Nei distances for COI and ND1 sequences were 0.0024 and 0.0032, respectively, and were not significantly different from intraspecific distances (Kruskal–Wallis tests: P  = 0.58 and P  = 0.69, for COI and ND1, respectively). Similar to the results obtained from the mtDNA sequences, no relationship was found between the ITS1 maximum parsimony tree topology and the morphologic classification of specimens in M. gregaria and M. subrugosa . We conclude that M. gregaria and M. subrugosa from southern South America may either represent a case of a dimorphic species, or a case of incomplete lineage sorting. The fact that these two morphospecies did not show fixed differences over a total of 1947 bp analysed reinforces the hypothesis of a single dimorphic species.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 421–434.  相似文献   

12.
Mosquito‐borne infectious diseases are emerging in many regions of the world. Consequently, surveillance of mosquitoes and concomitant infectious agents is of great importance for prediction and prevention of mosquito‐borne infectious diseases. Currently, morphological identification of mosquitoes is the traditional procedure. However, sequencing of specified genes or standard genomic regions, DNA barcoding, has recently been suggested as a global standard for identification and classification of many different species. Our aim was to develop a genetic method to identify mosquitoes and to study their relationship. Mosquitoes were captured at collection sites in northern Sweden and identified morphologically before the cytochrome c oxidase subunit I (COI) gene sequences of 14 of the most common mosquito species were determined. The sequences obtained were then used for phylogenetic placement, for validation and benchmarking of phenetic classifications and finally to develop a hierarchical PCR‐based typing scheme based on single nucleotide polymorphism sites (SNPs) to enable rapid genetic identification, circumventing the need for morphological characterization. The results showed that exact phylogenetic relationships between mosquito taxa were preserved at shorter evolutionary distances, but at deeper levels, they could not be inferred with confidence using COI gene sequence data alone. Fourteen of the most common mosquito species in Sweden were identified by the SNP/PCR‐based typing scheme, demonstrating that genetic typing using SNPs of the COI gene is a useful method for identification of mosquitoes with potential for worldwide application.  相似文献   

13.
Mnais costalis and M. pruinosa are damselflies (Odonata: Calopterygidae) with low dispersal abilities, both during their aquatic stream-living immature stage and their flying adult stage. A previous nuclear DNA (nDNA) sequencing and morphology study showed that these two species are very closely related, and cohabit widely in western Japan. The two species, however, segregate microhabitats along a stream: M. costalis lives in the lower reaches, and M. pruinosa in the upper reaches. In this study, our analyses were based on mitochondrial DNA (mtDNA), which usually mutates faster and is more variable among individuals than nDNA, and which is inherited maternally. We found that most COI haplotypes were shared between the two species, and that for most study sites interspecific riverine genetic structures were not clarified by mtDNA analysis. Incongruent population genetic structures based on nDNA and mtDNA suggested hybridization and introgression of mtDNA between the two species.  相似文献   

14.
Macrobrachium olfersii is an amphidromous freshwater prawn, widespread along the eastern coasts of the Americas. This species shows great morphological modifications during ontogenesis, and several studies have verified the existence of a wide intraspecific variation. Because of this condition, the species is often misidentified, and several synonyms have been documented. To elucidate these aspects, individuals of M. olfersii from different populations along its range of distribution were investigated. The taxonomic limit was established, and the degree of genetic variability of this species was described. We extracted DNA from 53 specimens of M. olfersii, M. americanum, M. digueti and M. faustinum, which resulted in 84 new sequences (22 of 16S mtDNA, 45 of Cythocrome Oxidase I (COI) mtDNA, and 17 of Histone (H3) nDNA). Sequences of three genes (single and concatenated) from these species were used in the Maximum Likelihood and Bayesian Inference phylogenetic analyses and COI sequences from M. olfersii were used in population analysis. The genetic variation was evaluated through the alignment of 554 bp from the 16S, 638 bp from the COI, and 338 bp from the H3. The rates of genetic divergence among populations were lower at the intraspecific level. This was confirmed by the haplotype net, which showed a continuous gene flow among populations. Although a wide distribution and high morphological intraspecific variation often suggest the existence of more than one species, genetic similarity of Caribbean and Brazilian populations of M. olfersii supported them as a single species.  相似文献   

15.
Haemaphysalis qinghaiensis as an endemic species in China mainly infests domestic animals and causes great harm to animals and humans in Northwestern plateau. However, there is no information about genetic diversity within the recently established populations of this tick species. Therefore, the present study analyzed the fragments of mitochondrial 16S rDNA, COI and the nuclear gene ITS1 of 56 H. qinghaiensis ticks across four regions of China which are main endemic areas of this species. Analysis showed 98.1–100% (16S rDNA), 97.9–100% (COI), 99.7–100% (ITS1) identity within individuals. For these sequences, 9, 15 and 8 haplotypes were found for 16S rDNA, COI and ITS1, respectively. Ticks from Yongjing were the most variable group, followed by Lintan, Huangyuan, and Tianzhu. Based on parallel analysis of the mitochondrial and nuclear genetic diversity of H. qinghaiensis, our results indicated that mitochondrial markers (especially COI) were much more useful than nuclear ITS for intraspecific genetic variability analysis.  相似文献   

16.
DNA barcoding is an approach to rapidly identify species using short, standard genetic markers. The mitochondrial cytochrome oxidase I gene (COI) has been proposed as the universal barcode locus, but its utility for barcoding in mushrooms (ca. 20,000 species) has not been established. We succeeded in generating 167 partial COI sequences (~450 bp) representing ~100 morphospecies from ~650 collections of Agaricomycotina using several sets of new primers. Large introns (~1500 bp) at variable locations were detected in ~5% of the sequences we obtained. We suspect that widespread presence of large introns is responsible for our low PCR success (~30%) with this locus. We also sequenced the nuclear internal transcribed spacer rDNA regions (ITS) to compare with COI. Among the small proportion of taxa for which COI could be sequenced, COI and ITS perform similarly as a barcode. However, in a densely sampled set of closely related taxa, COI was less divergent than ITS and failed to distinguish all terminal clades. Given our results and the wealth of ITS data already available in public databases, we recommend that COI be abandoned in favor of ITS as the primary DNA barcode locus in mushrooms.  相似文献   

17.
The phylogenetic position of two putative new species of the collembolan genus Orchesella was investigated by comparison with four other Italian species of the genus using a fragment of the mitochondrial gene encoding for subunit I of cytochrome c oxidase (COI). The gene showed the well-known A + T bias, typical of insect mitochondrial DNA, although A + T content was not as high as that observed in species belonging to more derived insect orders. The large number of variable sites in 3rd codon positions (85.2% variable) suggested that these sites contain significant homoplasy due to multiple hits. Despite the lack of morphological differentiation, the COI portion examined shows remarkable levels of genetic divergence between the putative species and their closest relatives. Phylogenetic analysis suggests that one of the putative new species is related to O. villosa, whereas the other is included in a clade with O. cincta and O. ranzii. The species O. chiantica appears to be related to O. villosa, agreeing with previous allozyme data.  相似文献   

18.
A DNA-based barcode identification system that is applicable to all animal species will provide a simple, universal tool for the identification of fish species. The barcode system is based on sequence diversity in subunit 1 cytochrome c oxidase (COI) gene. Identification and characterization of fish species based on morphological characters are sometimes found to be erroneous and environmentally affected. There are no studies on the genus Ompok in India at molecular level and species identification of the Ompok is usually carried out through morphological features. A total of 106 samples from three species Ompok pabda, O. pabo and O. bimaculatus were collected from eight sampling sites of seven Indian rivers. One hundred and six sequences were generated from COI region of three Ompok species and 21 haplotypes were observed. The sequence analysis of COI gene revealed three genetically distinct Ompok species and exhibited identical phylogenetic resolution among them. The partial COI gene sequence can be used as a diagnostic molecular marker for identification and resolution of taxonomic ambiguity of Ompok species.  相似文献   

19.
DNA barcoding Korean birds   总被引:6,自引:0,他引:6  
Yoo HS  Eah JY  Kim JS  Kim YJ  Min MS  Paek WK  Lee H  Kim CB 《Molecules and cells》2006,22(3):323-327
DNA barcoding, an inventory of DNA sequences from a standardized genomic region, provides a bio-barcode for identifying and discovering species. Several recent studies suggest that the sequence diversity in a 648 bp region of the mitochondrial gene for cytochrome c oxi- dase I (COI) might serve as a DNA barcode for identify- ing animal species such as North American birds, in- sects and fishes. The present study tested the effective- ness of a COI barcode in discriminating Korean bird species. We determined the 5' terminus of the COI bar- code for 92 species of Korean birds and found that spe- cies identification was unambiguous; the genetic differ- ences between closely related species were, on average, 25 times higher than the differences within species. We identified only one misidentified species out of 239 specimens in a genetic resource bank, so confirming the accuracy of species identification in the banking system. We also identified two potential composite species, calling for further investigation using more samples. The finding of large COI sequence differences between species confirms the effectiveness of COI barcodes for identifying Korean bird species. To bring greater reliability to the identification of species, increased in- tra- and interspecies sampling, as well as supplementa- tion of the mitochondrial barcodes with nuclear ones, is needed.  相似文献   

20.
S. M. KOSSENKO  C. H. FRY 《Ibis》1998,140(1):2-13
Studies were conducted over a 10-year period on the supposedly similar European Bee-eater Merops apiaster and Blue-cheeked Bee-eater Merops persicus breeding in mixed and separate colonies in four Asiatic countries. In spring, M. persicus arrived a few days later and laid up to 2 weeks later than M. apiaster. Spatial distributions of the two species were positively associated. They were sympatric and syntopic: more than half of the local breeding ranges overlapped, and many birds bred within sight and sound of the congener. Intraspecific conflict was frequent, but in mixed colonies interspecific conflict was rare. Most M. apiaster nest burrows were dug into cliffs and most M. persicus ones into level ground, but dense mixed colonies occurred only in cliffs. Burrow architecture differed specifically. Diets were qualitatively similar at insect family level but different at the species level, partly because of local variation in availability and partly because of distinct preferences of M. apiaster for small beetles, ants and termites and of M. persicus for large dragonflies and cicadas. Merops persicus was less specialized than M. apiaster and had an airborne insect prey spectrum nearly twice as broad. Diets were more alike where the two birds foraged together than where they foraged separately. There was a high incidence of egg and nestling loss by predation and starvation.
We speculate that each species may prove to breed more successfully in mixed than in monospecific colonies. We propose that the two bee-eaters do not compete for nest sites but may compete for food and coexist unaggressively by trading off food competition against improved breeding success in mixed colonies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号