首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tripterine is a chemical isolated from a traditional Chinese herb which had been testified for its anti-inflammatory and immunosuppressive activities in a previous study. However, little is known about the effects and mechanism of action of Tripterine on treating lupus nephritis. In the present study we investigated the effect of Tripterine on the F1 hybrids of New Zealand Black (NZB) and New Zealand White (NZW) mice which functioned as a model of human systemic lupus erythematosus (BW F1 mice) and evaluated the possible mechanism implicated in the mRNA expression of TGF-beta1 and collagen IV expression of the BW F1 mice kidney tissue. Different doses of Tripterine were injected peritoneally to BW F1 mice at different stages to study the preventive effects of Tripterine on lupus nephritis glomerulosclerosis and its mechanisms. Twenty-four hour urine protein excretion, serum anti-dsDNA antibodies and the expression of collagen type IV were examined by immunohistochemistry while the expression of TGF-beta1 mRNA was detected by RT nested PCR. Tripterine decreased urine protein excretion and the level of serum anti-dsDNA antibodies and also suppressed the expression of collagen type IV and TGF-beta1 mRNA in the murine kidney tissue. Administration of Tripterine before the occurrence of proteinuria had much greater protective effects than if it was administered after the occurrence of proteinuria. No significant difference was found between the 3 mg/kg/week Tripterine-treated-group and the 6 mg/kg/week Tripterine-treated-group. Tripterine had a definite protective effect on glomerulosclerosis of the lupus murine model. Tripterine could significantly reduce the amount of urine protein excretion, suppress the formation of serum anti-dsDNA antibodies, it could also efficiently decrease the expression of renal collagen type IV probably due to its suppressive effect on the expressions of local TGF-(1 mRNA) in this model.  相似文献   

2.
Reactive oxygen species (ROS) cause death of cerebellar granule neurons. Here, a 15-min pulse of H(2)O(2) (100 microm) induced an active process of neuronal death distinct from apoptosis. Oxidative stress activated a caspase-independent but calpain-dependent decline of calcium/calmodulin-dependent protein kinase IV and cAMP- responsive element-binding protein (CREB). Calpain inhibitors restored calcium/calmodulin-dependent protein kinase IV and CREB but did not influence phosphorylated CREB levels or survival, indicating recruitment of an additional dephosphorylation process. Co-treatment with calpain and serine/threonine phosphatase inhibitors restored pCREB levels and rescued neurons. This phosphatase-activated signaling pathway was shown to be dependent on de novo protein synthesis. Further, gene transfer studies revealed that CREB is a common final effector of both apoptosis and ROS-induced death. Our data indicate that dephosphorylation and proteolytic signaling mechanisms underlie ROS-induced programmed cell death.  相似文献   

3.
Abstract: To help define the molecular basis of ethanol's actions on the nervous system, we have in previous studies demonstrated that ethanol administration triggers a robust increase in cyclic AMP-response element-binding protein (CREB) phosphorylation in the cerebellum. The purpose of the present study was to compare the effects of acute and chronic ethanol exposure on the phosphorylation of CREB in rat cerebellum and to determine which cell types in the cerebellum display this response to ethanol. An acute ethanol challenge (3.0 g/kg of body weight) induced a rapid increase in content of the phosphorylated form of CREB, peaking at 30 min and declining to basal levels within 2 h. Immunocytochemical studies revealed prominent ethanol-induced changes in phosphoCREB in the granule cell layer, with little phosphoCREB apparent in Purkinje cells. Following chronic ethanol exposure (5 weeks), induction of CREB phosphorylation by a subsequent acute ethanol challenge was markedly attenuated. The attenuation in CREB phosphorylation was associated with a significant reduction in the levels of the catalytic unit of protein kinase A and calcium/calmodulin-dependent protein kinase IV. In summary, induction of CREB phosphorylation in cerebellum is most prominent in the granule cell layer. Neuroadaptation to chronic ethanol exposure includes a reduction in nuclear protein kinase A and calcium/calmodulin-dependent protein kinase IV levels, an event associated with impaired CREB phosphorylation.  相似文献   

4.
Abstract: The major postsynaptic density protein, proposed to be a calcium/calmodulin-dependent protein kinase, becomes phosphorylated when a postsynaptic density preparation from rat cerebral cortex is incubated in medium containing calcium and calmodulin. Upon longer incubation, however, the level of phosphorylation declines, suggesting the presence of a phosphatase activity. When Microcystin-LR, a phosphatase inhibitor, is included in the phosphorylation medium, the decline in phosphorylation is prevented and a higher maximal level of phosphorylation can be achieved. Under these conditions, the maximal phosphorylation of major postsynaptic density protein is accompanied by a nearly complete shift in its electrophoretic mobility from 50 kDa to 54 kDa, similar to that described for the a subunit of the soluble calcium/calmodulin-dependent protein kinase II. Of the four major groups of serine/threonine protein phosphatases, the enzyme responsible for the dephosphorylation of major postsynaptic density protein is neither type 2C, which is insensitive to Microcystin-LR, nor type 2B, which is calcium-dependent. As Microcystin-LR is much more potent than okadaic acid in inhibiting the dephosphorylation of major postsynaptic density protein, it is likely that the postsynaptic density-associated phosphatase is a type 1. The above results indicate that the relatively low level of phosphorylation of the major postsynaptic density protein observed in preparations containing postsynaptic densities is not due to a difference between the cytoplasmic and postsynaptic density-associated calcium/calmodulin-dependent kinases as previously proposed, but to a phosphatase activity, presumably belonging to the type 1 group.  相似文献   

5.
Reactive oxygen intermediates (ROI) have been viewed traditionally as damaging to the cell. However, a predominance of evidence has shown that ROI can also function as important activators of key cellular processes, and ROI have been shown to play a vital role in cell signaling networks. The calcium/calmodulin-dependent protein kinases (CaM kinases) are a family of related kinases that are activated in response to increased intracellular calcium concentrations. In this report we demonstrate that hydrogen peroxide treatment results in the activation of both CaM kinase II and IV in Jurkat T lymphocytes. Surprisingly, this activation occurs in the absence of any detectable calcium flux, suggesting a novel means for the activation of these kinases. Treatment of Jurkat cells with phorbol 12-myristate 13-acetate (PMA), which does not cause a calcium flux, also activated the CaM kinases. The addition of catalase to the cultures inhibited PMA-induced activation of the CaM kinases, suggesting that similar to hydrogen peroxide, PMA also activates the CaM kinases via the production of ROI. One mechanism by which this likely occurs is through oxidation and consequential inactivation of cellular phosphatases. In support of this concept, okadaic acid and microcystin-LR, which are inhibitors of protein phosphatase 2A (PP2A), induced CaM kinase II and IV activity in these cells. Overall, these results demonstrate a novel mechanism by which ROI can induce CaM kinase activation in T lymphocytes.  相似文献   

6.
7.
Stimulation of secretion in guinea pig exocrine cells is associated with an enhanced synthesis in these cells of 1-O-alkyl-2-sn-acetyl-glycero-3-phosphocholines (PAF) from 1-O-alkyl-sn-glycero-3-phosphocholine (lyso-PAF) (S?ling, H-D., and Fest, W. (1986) J. Biol. Chem. 261, 13916-13922). This results from a stimulation of the activity of lyso-1-alkylglycerophosphocholine acetyltransferase (EC 2.3.1.67). Here we have analyzed the effects of various agonists on the activity of this enzyme in guinea pig parotid gland microsomes. Carbamoylcholine leads within less than 30 s to a 2- to 4-fold activation of lyso-PAF-acetyltransferase, which persists after solubilization of the microsomal enzyme with octyl glucoside. The calcium ionophore A23187 has a similar though smaller effect. Neither isoproterenol (2 X 10(-5) M), which stimulates exocytosis more than carbachol, nor phorbol ester significantly affected lyso-PAF-acetyltransferase activity. Incubation of microsomes from unstimulated parotid gland acini with cAMP-dependent and calcium/calmodulin-dependent protein kinase resulted in a 4-fold and 2.9-fold activation of lyso-PAF-acetyltransferase activity, respectively. Protein kinase C had no significant effect. Activation with calcium/calmodulin-dependent protein kinase was inhibited by 40 microM trifluoperazine. When microsomes from carbachol-stimulated glands were used, in vitro activation of the enzyme by calcium/calmodulin-dependent protein kinase was almost abolished. Protein phosphatase 2A in vitro strongly reduced lyso-PAF-acetyltransferase activity in microsomes from both stimulated and unstimulated glands, whereas alkaline phosphatase and protein phosphatase 1 had only small effects. Following treatment with protein phosphatase 2A, enzyme activity in microsomes from stimulated glands could be enhanced more than 8-fold by subsequent incubation with calcium/calmodulin-dependent protein kinase. Although unsuccessful attempts have made it impossible so far to demonstrate directly the incorporation of phosphate into lyso-PAF-acetyltransferase, the results reported here strongly suggest that the enzyme in exocrine cells is regulated by phosphorylation-dephosphorylation and that a calcium/calmodulin-dependent protein kinase is responsible for the activation of the enzyme and type-2 protein phosphatases for its inactivation.  相似文献   

8.
We studied the precipitating and hemagglutinating autoantibodies in the sera of patients with various connective tissue diseases in general and lupus in particular. Saline soluble extract of goat thymus had adequate antigenic materials as compared to other organs. Twenty per cent of patients with systemic lupus erythematosus were positive for precipitating autoantibodies by immunodiffusion and 44% by counterimmunoelectrophoresis. Normal human subjects, nonrheumatic disease patients and patients with rheumatoid arthritis and progressive systemic sclerosis were all negative. Forty seven per cent of positive systemic lupus erythematosus sera showed two precipitin systems. Enzyme sensitivities were used as the basis of identification of most of the antigenic specificities. Passive hemagglutination was carried out to identify antibodies to non-histone nuclear protein and nuclear ribonucleo-protein antigens. Thirty eight % of systemic lupus erythematosus patients were positive by this technique. Passive hemagglutination although a highly sensitive technique could not detect antibodies against antigenic systems other than non-histone nuclear protein and nuclear ribonucleoprotein.  相似文献   

9.
High level expression of Fc epsilon RI gamma chain replaces the deficient TCR zeta-chain and contributes to altered TCR/CD3-mediated signaling abnormalities in T cells of patients with systemic lupus erythematosus. Increased responsiveness to Ag has been considered to lead to autoimmunity. To test this concept, we studied early signaling events and IL-2 production in fresh cells transfected with a eukaryotic expression vector encoding the Fc epsilon RI gamma gene. We found that the overexpressed Fc epsilon RI gamma chain colocalizes with the CD3 epsilon chain on the surface membrane of T cells and that cross-linking of the new TCR/CD3 complex leads to a dramatic increase of intracytoplasmic calcium concentration, protein tyrosine phosphorylation, and IL-2 production. We observed that overexpression of Fc epsilon RI gamma is associated with increased phosphorylation of Syk kinase, while the endogenous TCR zeta-chain is down-regulated. We propose that altered composition of the CD3 complex leads to increased T cell responsiveness to TCR/CD3 stimulation and sets the biochemical grounds for the development of autoimmunity.  相似文献   

10.
The phosphorylation of caldesmon was studied to determine if kinase activity reflected either an endogenous kinase or caldesmon itself. Titration of kinase activity with calmodulin yielded maximum activity at substoichiometric ratios of calmodulin/caldesmon. The sites of phosphorylation on caldesmon for calcium/calmodulin-dependent protein kinase II and endogenous kinase were the same, but distinct from protein kinase C sites. Phosphorylation in the presence of Ca2+ and calmodulin resulted in a subsequent increase of endogenous kinase activity in the absence of Ca2+. These results suggest that caldesmon is not a protein kinase and that kinase activity in caldesmon preparations is due to calcium/calmodulin-dependent protein kinase II.  相似文献   

11.
Autoimmunity leads to the activation of innate effector pathways, proinflammatory cytokine production, and end-organ injury. Macrophage migration inhibitory factor (MIF) is an upstream activator of the innate response that mediates the recruitment and retention of monocytes via CD74 and associated chemokine receptors, and it has a role in the maintenance of B lymphocytes. High-expression MIF alleles also are associated with end-organ damage in different autoimmune diseases. We assessed the therapeutic efficacy of (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1), an orally bioavailable MIF antagonist, in two distinct models of systemic lupus erythematosus: the NZB/NZW F1 and the MRL/lpr mouse strains. ISO-1, like anti-MIF, inhibited the interaction between MIF and its receptor, CD74, and in each model of disease, it reduced functional and histological indices of glomerulonephritis, CD74(+) and CXCR4(+) leukocyte recruitment, and proinflammatory cytokine and chemokine expression. Neither autoantibody production nor T and B cell activation were significantly affected, pointing to the specificity of MIF antagonism in reducing excessive proinflammatory responses. These data highlight the feasibility of targeting the MIF-MIF receptor interaction by small-molecule antagonism and support the therapeutic value of downregulating MIF-dependent pathways of tissue damage in systemic lupus erythematosus.  相似文献   

12.
Abstract: In the present investigation, in vitro phosphorylation of CNS proteins of the silkworm Bombyx mori during the postembryonic development have been studied. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography of phosphorylated proteins revealed the presence of major phosphoproteins of 59/60 kDa. Based on molecular mass, calcium/calmodulin-dependent autophosphorylation, substrate specificity, KN-62 inhibition, apparent K m for ATP and syntide-2, these proteins were identified as calcium/calmodulin-dependent protein kinase II (CaM kinase II). Anti-rat CaM kinase II monoclonal antibody showed immunoreactivity with Bombyx CaM kinase II isoforms. This kinase showed a high degree of autophosphorylation in neural tissue. During postembryonic development of Bombyx , two distinct peaks of enzyme activity could be noticed, one at the late-larval and another at the late-pupal stage, which were associated with an increase in amount of the enzyme. These results suggested that the expression of CaM kinase II in the CNS of Bombyx was developmentally regulated.  相似文献   

13.
Systemic lupus erythematosus is a complement-mediated autoimmune disease. While genetic deficiencies of classical pathway components lead to an increased risk of developing systemic lupus erythematosus, end organ damage is associated with complement activation and immune complex deposition. The role of classical pathway regulators in systemic lupus erythematosus is unknown. C4 binding protein (C4bp) is a major negative regulator of the classical pathway. In order to study the role of C4bp deficiency in an established murine model of lupus nephritis, mice with a targeted deletion in the gene encoding C4bp were backcrossed into the MRL/lpr genetic background. Compared with control MRL/lpr mice, C4bp knockout MLR/lpr mice had similar mortality and similar degrees of lymphoproliferation. There were no differences in the extent of proteinuria or renal inflammation. Staining for complement proteins and immunoglobulins in the kidneys of diseased mice revealed no significant strain differences. Moreover, there was no difference in autoantibody production or in levels of circulating immune complexes. In comparison with C57BL/6 mice, MRL/lpr mice had depressed C4 levels as early as 3 weeks of age. The absence of C4bp did not impact serum C4 levels or alter classical pathway hemolytic activity. Given that immune complex renal injury in the MRL/lpr mouse is independent of Fc receptors as well as the major negative regulator of the classical pathway, new mechanisms for immune-complex-mediated renal injury need to be considered.  相似文献   

14.
Anti-elastin antibodies in systemic lupus erythematosus   总被引:1,自引:0,他引:1  
Immunological response to elastin-derived peptides may cause tissue damage with subsequent degradation of the elastic fibres. Therefore, an incidence of anti-elastin antibodies in sera of patients with the systemic lupus erythematosus was studied. Sixty sera from 50 patients with systemic lupus erythematosus and 50 healthy subjects were assayed with dot-immunobinding technique. Titre 1:10 was considered diagnostically significant. Anti-elastin antibodies were diagnosed in 19 patients (31%) where as they were absent in the control group. In all cases anti-elastin antibodies were IgG.  相似文献   

15.
The lupus anticoagulant was found in the plasma of 31 of 60 patients with systemic lupus erythematosus and other connective tissue disorders (mixed connective tissue disease, systemic vasculitis, polyarteritis nodosa, primary sicca syndrome, discoid lupus, Behcet''s syndrome, and systemic sclerosis). Strong associations were found with biological false positive seroreaction for syphilis and thrombocytopenia. The most striking association, however, was with the high prevalence of thrombosis. This tendency to thrombosis was independent of disease activity of systemic lupus erythematosus. The lupus anticoagulant appears to be a useful marker for a subset of patients with systemic lupus erythematosus at risk for the development of thromboembolic complications.  相似文献   

16.
A profound deficiency of type I protein kinase A (PKA-I or RIalpha/beta2C2) phosphotransferase activity occurs in the T lymphocytes of 80% of subjects with systemic lupus erythematosus (SLE), an autoimmune disorder of unknown etiology. This isozyme deficiency is predominantly the product of reduced or absent beta isoform of the type I regulatory subunit (RIbeta). Transient transfection of RIbeta cDNAs from SLE subjects into autologous T cells that do not synthesize the RIbeta subunit bypassed the block, resulting in RIbeta subunit synthesis and restoration of the PKA-Ibeta (RIbeta2C2) holoenzyme. Transfected T cells activated via the T cell surface receptor complex revealed a significant increase of cAMP-activatable PKA activity that was associated with a significant increase in IL-2 production. These data demonstrate that a disorder of RIbeta translation exists, and that correction of the PKA-I deficiency may enhance T lymphocyte effector functions in SLE.  相似文献   

17.
A calcium and calmodulin-dependent protein kinase has been purified from rat brain. It was monitored during the purification by its ability to phosphorylate the synaptic vesicle-associated protein, synapsin I. A 300-fold purification was sufficient to produce kinase that is 90-95% pure as determined by scans of stained sodium dodecyl sulfate-polyacrylamide gels and has a specific activity of 2.9 mumol of 32P transferred per min/mg of protein. Thus, the kinase is a relatively abundant brain enzyme, perhaps comprising as much as 0.3% of the total brain protein. The Stokes radius (95 A) and sedimentation coefficient (16.4 S) of the kinase indicate a holoenzyme molecular weight of approximately 650,000. The holoenzyme is composed of three subunits as judged by their co-migration with kinase activity during the purification steps and co-precipitation with kinase activity by a specific anti-kinase monoclonal antibody. The three subunits have molecular weights of 50,000, 58,000, and 60,000, and have been termed alpha, beta', and beta, respectively. The alpha- and beta-subunits are distinct peptides, however, beta' may have been generated from beta by proteolysis. All three of these subunits bind calmodulin in the presence of calcium and are autophosphorylated under conditions in which the kinase is active. The subunits are present in a ratio of about 3 alpha-subunits to 1 beta/beta'-subunit. We therefore postulate that the 650,000-Da holoenzyme consists of approximately 9 alpha-subunits and 3 beta/beta'-subunits. The abundance of this calmodulin-dependent protein kinase indicates that its activation is likely to be an important biochemical response to increases in calcium ion concentration in neuronal tissue.  相似文献   

18.
Calcium channels in the heart play a major role in cardiac function. These channels are modulated in a variety of ways, including protein phosphorylation. Cyclic AMP-mediated phosphorylation is the best understood phosphorylation mechanism which regulates calcium influx into cardiac cells. Binding of an agonist (e.g., a catecholamine) to the appropriate receptor stimulates production of cyclic AMP by adenylate cyclase. The cyclic AMP may subsequently bind to and activate a cyclic AMP-dependent protein kinase, which then can phosphorylate a number of substrates, including the calcium channel (or a closely-associated regulatory protein). This results in stimulation of the calcium channels, greater calcium influx, and increased contractility. The cyclic AMP system is not the only protein kinase system in the heart. Thus, the possibility exists that other protein kinases may also regulate the calcium channels and, hence, cardiac function. Recent evidence suggests that cyclic GMP-mediated phosphorylation may play a role opposite to cyclic AMP-mediated phosphorylation, i.e., inhibition of the calcium current rather than stimulation. Other recent evidence also suggests that a calcium/calmodulin-dependent protein kinase and calcium/phospholipid-dependent protein kinase (protein kinase C) may also regulate the myocardial calcium channels. Thus, protein phosphorylation may be a general mechanism whereby calcium channels and cardiac function are modulated under a variety of conditions.  相似文献   

19.
Lupus nephritis is a major contributor to morbidity and mortality in systemic lupus erythematosus, but little is known about the pathogenic processes that underlie the progressive decay in renal function. A common finding in lupus nephritis is thickening of glomerular basement membranes associated with immune complex deposition. It has been speculated that alterations in the synthesis or degradation of membrane components might contribute to such changes, and thereby to initiation and progression of nephritis through facilitation of immune complex deposition. Matrix metalloproteinases (MMPs) are enzymes that are intimately involved in the turnover of major glomerular basement membrane constituents, including collagen IV and laminins. Alterations in the expression and activity of MMPs have been described in a number of renal diseases, suggesting their relevance to the pathogenesis of various glomerulopathies. The same is true for their natural inhibitors, the tissue inhibitor of metalloproteinase family. Recent data from our group have identified an increase in proteolytic activity within the glomerulus coinciding with the development of proteinuria in the mouse model of systemic lupus erythematosus. (NXB × NZW)F1 Here we review current understanding of MMP/tissue inhibitor of metalloproteinase function within the kidney, and discuss their possible involvement in the development and progression of lupus nephritis.  相似文献   

20.
The nonhomologous end-joining pathway is the principal mechanism for repair of ionizing radiation-induced, double-strand breaks in mammalian cells. Three polypeptides in this pathway, including the two subunits of Ku protein and the catalytic subunit of the DNA-dependent protein kinase, are known targets of autoantibodies in systemic rheumatic diseases. Here we show that two additional polypeptides in the pathway, DNA ligase IV and XRCC4, are also targets of autoantibodies. These Abs were present in 20% of patients with systemic lupus erythematosus and overlap syndrome. Previous work has shown that XRCC4 is subject to radiation-induced post-translational modification, including phosphorylation by DNA-dependent protein kinase and cleavage by caspase 3. We mapped a major autoimmune epitope in XRCC4 and found that it encompassed a DNA-dependent protein kinase phosphorylation site, which is located at serine 260; that it was adjacent to a site for caspase 3, which cleaves after residue 265; and that it also spanned a site for the inflammatory protease, granzyme B, which cleaves after residue 254. The finding that five different polypeptides in the nonhomologous end-joining pathway are potential targets of autoantibodies together with the observation that one of the autoimmune epitopes in XRCC4 coincides with a sequence that is a nexus for radiation-induced regulatory events suggest that exposure to agents that introduce DNA double-strand breaks may be one of the factors that influences the development of an autoimmune response in susceptible individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号