首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Barbar E  Hare M  Makokha M  Barany G  Woodward C 《Biochemistry》2001,40(32):9734-9742
The NMR characteristics of [14-38]Abu, a synthetic variant of BPTI that is partially folded in aqueous buffer near neutral pH, support a model of early folding events which begin with stabilization of the nativelike, slow exchange core [Barbar, E., Hare, M., Daragan, V., Barany, G., and Woodward, C. (1998) Biochemistry 37, 7822-7833 (1)]. In partially folded [14-38]Abu, urea denaturation profiles for representative amide protons show that global unfolding is non-two-state and that core residues require a higher concentration of urea to unfold. Dynamic properties of pH-denatured [14-38]Abu and fully reduced and unfolded BPTI analogue were determined from heteronuclear NMR relaxation measurements at similar solution conditions. Differences at various sites in the polypeptide chain were evaluated from spectral density functions determined from T1, T2, and steady-state heteronuclear NOE data. Although denatured [14-38]Abu contains no persistent secondary structure, its most ordered residues are those that, in native BPTI, fold into the slow exchange core. The fully reduced analogue is significantly more mobile and shows less heterogeneous dynamics, but at 1 degree C, restricted motion is observed for residues in the central segments of the polypeptide chain. These observations indicate that there is a developing core or cores even in highly unfolded species. Apparently the effect of 14-38 disulfide on unfolded  相似文献   

2.
The exchange kinetics of the slowest exchanging BPTI beta-sheet protons are complex compared to model peptides; the activation energy, E alpha, and the pH dependence are temperature dependent. We have measured the exchange kinetics in the range pH 1--11, 33--71 degrees C, particularly the temperature dependence. The data are fit to a model in which exchange of each proton is determined by two discrete dynamical processes, one with E alpha approximately 65 kcal/mol and less than first order dependence on catalyst ion, and one with E alpha 20--30 kcal/mol and approaching first order in catalyst ion. The low activation energy process is the mechanism of interest in the native conformation of globular proteins and involves low energy, small amplitude fluctuations; the high activation energy process involves major unfolding. The model is simple, has a precedent in the hydrogen exchange literature, and explains quantitatively the complex feature of the exchange kinetics of single protons in BPTI, including the following. For the slowest exchanging protons, in the range 36 degrees--68 degrees C, E alpha is approximately 65 kcal/mol at pH approximately 4, 20--30 kcal/mol at pH greater than 10, and rises to approximately 65 kcal/mol with increasing temperature at pH 6--10; the Arrhenius plots converge around 70 degrees C; the pH of minimum rate, pHmin, is greater than 1 pH unit higher at 68 degrees C than for model compounds; and at high pH, the pH-rate profiles shift to steeper slope; the exchange rates around pHmin are correlated to the thermal unfolding temperature in BPTI derivatives (Wagner and Wüthrich, 1979, J. Mol. Biol. 130:31). For the more rapidly exchanging protons in BPTI the model accounts for the observation of normal pHmin and E alpha of 20--30 kcal/mol at all pH's. The important results of our analysis are (a) rates for exchange from the folded state of proteins are not correlated to thermal lability, as proposed by Wuthrich et al. (1979, J. Mol. Biol. 134:75); (b) the unfolding rate for the BPTI cooperative thermal transition is equal to the observed exchange rates of the slowest exchanging protons between pH 8.4--9.6, 51 degrees C; (c) the rates for exchange of single protons from folded BPTI are consistent with our previous hydrogen-tritium exchange results and with a penetration model of the dynamic processes limiting hydrogen exchange.  相似文献   

3.
P Brandt  C Woodward 《Biochemistry》1987,26(11):3156-3167
Hydrogen exchange rates of six beta-sheet peptide amide protons in bovine pancreatic trypsin inhibitor (BPTI) have been measured in free BPTI and in the complexes trypsinogen-BPTI, trypsinogen-Ile-Val-BPTI, bovine trypsin-BPTI, and porcine trypsin-BPTI. Exchange rates in the complexes are slower for Ile-18, Arg-20, Gln-31, Phe-33, Tyr-35, and Phe-45 NH, but the magnitude of the effect is highly variable. The ratio of the exchange rate constant in free BPTI to the exchange rate constant in the complex, k/kcpIx, ranges from 3 to much greater than 10(3). Gln-31, Phe-45, and Phe-33 NH exchange rate constants are the same in each of the complexes. For Ile-18 and Tyr-35, k/kcpIx is much greater than 10(3) for the trypsin complexes but is in the range 14-43 for the trypsinogen complexes. Only the Arg-20 NH exchange rate shows significant differences between trypsinogen-BPTI and trypsinogen-Ile-Val-BPTI and between porcine and bovine trypsin-BPTI.  相似文献   

4.
The native conformation of a protein may be expressed in terms of the dihedral angles, phi's and psi's for the backbone, and kappa's for the side chains, for a given geometry (bond lengths and bond angles). We have developed a method to obtain the dihedral angles for a low-energy structure of a protein, starting with the X-ray structure; it is applied here to examine the degree of flexibility of bovine pancreatic trypsin inhibitor. Minimization of the total energy of the inhibitor (including nonbonded, electrostatic, torsional, hydrogen bonding, and disulfide loop energies) yields a conformation having a total energy of -221 kcal/mol and a root mean square deviation between all atoms of the computed and experimental structures of 0.63 A. The optimal conformation is not unique, however, there being at least two other conformations of low-energy (-222 and -220 kcal/mol), which resemble the experimental one (root mean square deviations of 0.66 and 0.64 A, respectively). These three conformations are located in different positions in phi, psi space, i.e., with a total deviation of 81 degrees, 100 degrees and 55 degrees from each other (with a root mean square deviation of several degrees per dihedral angle from each other). The nonbonded energies of the backbones, calculated along lines in phi, psi space connecting these three conformations, are all negative, without any intervening energy barriers (on an energy contour map in the phi, psi plane). Side chains were attached at several representative positions in this plane, and the total energy was minimized by varying the kappa's. The energies were of approximately the same magnitude as the previous ones, indicating that the conformation of low energy is flexible to some extent in a restricted region of phi, psi space. Interestingly, the difference delta phi i+1 in phi i+1 for the (i + 1)th residue from one conformation to another is approximately the same as -delta psi i for the ith residue; i.e., the plane of the peptide group between the ith and (i + 1)th residues re-orient without significant changes in the positions of the other atoms. The flexibility of the orientations of the planes of the peptide groups is probably coupled in a cooperative manner to the flexibility of the positions of the backbone and side-chain atoms.  相似文献   

5.
Denisov VP  Peters J  Hörlein HD  Halle B 《Biochemistry》2004,43(38):12020-12027
Using magnetic relaxation dispersion (MRD), we have previously shown that the four internal water molecules in bovine pancreatic trypsin inhibitor (BPTI) exchange with bulk water on time scales between 10(-8) and 10(-4) s at room temperature. Because this exchange is controlled by the protein structure, internal water molecules can be used to probe rare conformational fluctuations. Here, we report (2)H and (17)O MRD data at three temperatures for wild-type BPTI and two BPTI variants where the 14-38 disulfide bond has been cleaved by a double Cys --> Ser mutation or by disulfide reduction and carboxamidomethylation. The MRD data show that the internal water molecules are conserved on disulfide cleavage. However, the exchange rate of the water molecule buried near the disulfide bond is enhanced by 2-4 orders of magnitude. The relation of water exchange to other dynamic processes in BPTI is discussed.  相似文献   

6.
Reduced bovine pancreatic trypsin inhibitor has a compact structure   总被引:4,自引:0,他引:4  
D Amir  E Haas 《Biochemistry》1988,27(25):8889-8893
The conformation of reduced bovine pancreatic trypsin inhibitor (R-BPTI) under reducing conditions was monitored by measurements of nonradiative excitation energy-transfer efficiencies (E) between a donor probe attached to the N-terminal Arg1 residue and an acceptor attached to one of the lysine residues (15, 26, 41, or 46) [Amir, D., & Haas, E. (1987) Biochemistry 26, 2162-2175]. High-excitation energy-transfer efficiencies that approach those found in the native state were obtained for the reduced labeled BPTI derivatives in 0.5 M guanidine hydrochloride (Gdn.HCl) and 4 mM DTT. Unlike the dependence expected for a random coil chain, E does not decrease as a function of the number of residues between the labeled sites. The efficiency of energy transfer between probes attached to residues 1 and 15 in the reduced state is higher than that found for the same pair of sites in the native state or reduced unfolded (in 6 M Gdn.HCl) state. This segment also shows high dynamic flexibility. These results indicate that the overall structure of reduced BPTI under folding (but still reducing) conditions shows a high population of conformers with interprobe distances similar to those of the native state. Reduced BPTI seems to be in a molten globule state characterized by a flexible, compact structure, which probably reorganizes into the native structure when the folding is allowed to proceed under oxidizing conditions.  相似文献   

7.
8.
9.
The structure of the complex between anhydro-trypsin and pancreatic trypsin inhibitor has been determined by difference Fourier techniques using phases obtained from the native complex (Huber et al., 1974). It was refined independently by constrained crystallographic refinement at 1.9 å resolution. The anhydro-complex has Ser 195 converted to dehydro-alanine. There were no other significant structural changes. In particular, the high degree of pyramidalization of the C atom of Lys 15 (I) of the inhibitor component observed in the native complex is maintained in the anhydro-species.  相似文献   

10.
11.
A major goal of this paper was to estimate a dynamic range of equilibrium constant for the opening of a single peptide bond in a model protein, bovine pancreatic trypsin inhibitor (BPTI). Ten mutants of BPTI containing a single Xaa-->Met substitution introduced in different parts of the molecule were expressed in Escherichia coli. The mutants were folded, purified to homogeneity, and cleaved with cyanogen bromide to respective cleaved forms. Conformation of the intact mutants was similar to the wildtype, as judged from their circular dichroism spectra. Substantial conformational changes were observed on the chemical cleavage of three single peptide bonds--Met46-Ser, Met49-Cys, and Met53-Thr--located within the C-terminal helix. Cleavage of those peptide bonds caused a significant destabilization of the molecule, with a drop of the denaturation temperature by 56.4 degrees C to 68 degrees C at pH 4.3. Opening of the remaining seven peptide bonds was related to a 10.8 degrees C to 39.4 degrees C decrease in T(den). Free energies of the opening of 10 single peptide bonds in native mutants (Delta G(op,N)) were estimated from the thermodynamic cycle that links denaturation and cleavage free energies. To calculate those values, we assumed that the free energy of opening of a single peptide bond in the denatured state (Delta G(op,D)) was equal to -2.7 kcal/mole, as reported previously. Calculated Delta G(op,N) values in BPTI were in the range from 0.2 to 10 kcal/mole, which was equivalent to a >1 million-fold difference in equilibrium constants. The values of Delta G(op,N) were the largest for peptide bonds located in the C-terminal helix and significantly lower for peptide bonds in the beta-structure or loop regions. It appears that opening constants for single peptide bonds in various proteins span across 33 orders of magnitude. Typical equilibrium values for a single peptide bond opening in a protein containing secondary structure elements fall into negligibly low values, from 10(-3) to 10(-8), and are efficient to ensure stability against proteolysis.  相似文献   

12.
One of the frontiers today in molecular biology is to measure, identify and go further to predict the low-frequency internal motion of biological macromolecules, which is crucially important for understanding the dynamic mechanism of various biological functions occurring in such molecules. Based on the theory of continuity model developed recently for dealing with the internal low-frequency motion of a biological macromolecule, it is predicted that the low-frequency phonons with wave number of about 23 cm?1 might be excited in BPTI molecule.  相似文献   

13.
Renaturation of the reduced bovine pancreatic trypsin inhibitor   总被引:5,自引:0,他引:5  
Refolding of the reduced pancreatic trypsin inhibitor has been investigated using thiol-disulphide exchange with various disulphide reagents to regenerate the three disulphide bonds. Essentially quantitative renaturation was routinely achieved. The refolded inhibitor was indistinguishable from the original protein in interaction with trypsin and chymotrypsin, electrophoretic mobility, and nature of disulphide bonds.The kinetics of refolding using oxidized dithiothreitol to form the disulphide bonds have been studied in some detail. The renaturation reaction is usually of second-order, being first-order in both inhibitor and disulphide reagent concentrations. A short lag period in the appearance of inhibitor activity and the inhibition of the rate, but not the extent, of renaturation by low levels of reduced dithiothreitol suggest the accumulation of metastable intermediates. In addition, heterogeneity of the refolding reaction is apparent at high concentrations of disulphide reagent, with a fraction of the material being only slowly renatured.  相似文献   

14.
15.
Carlacci L 《Biopolymers》2001,58(4):359-373
The x-ray conformations of 5-, 7-, 9-, and 12-residue loops in bovine pancreatic trypsin inhibitor (BPTI) were predicted by the use of multiple independent Monte Carlo simulating annealing (MCSA) runs starting from random conformations. Four buried water molecules interacted with a 12-residue loop that started at residue 8 and ended at residue 19, and that included the binding region. The final conformation at the end of an MCSA run was characterized. Solvation free energy based on the solvent accessible surface area was included in the energy function at low simulated annealing temperatures. Conformational states were interactively separated by a recently developed algorithm. Computed loops were characterized in terms of total energy, and backbone and side chain root mean square deviations (RMSDs) between computed native loop conformations and the x-ray conformation. The 12-residue loop was computed with and without buried water [called WL12(8-19) and L12(8-19), respectively]. The backbone was reliably and reproducibly computed to within 1.1 A in L12(8-19) and 0.9 A in WL12(8-19). L12(8-19) required significantly more MCSA runs to achieve the same level of reproducibility as WL12(8-19). Based on the size of the cluster of low energy native loop conformations, and the computational effort, WL12(8-19) had greater entropy. In calculations of 7-, 9-, and 12-residue loops without buried water, the effects of buried water became obvious in the 12-residue loop calculation, which interacted with all four buried water molecules. Nearly all conformations of the native loop conformer had a hydrogen bond between the Lys 15 side chain and the backbone of Gly 12, Pro 13, and Cys 14, which may have implications in the rate of exchange of buried water with bulk solvent and in protein folding. The present version of MCSA program was more efficient than earlier versions.  相似文献   

16.
Structural and dynamic properties of bovine pancreatic trypsin inhibitor (BPTI) in aqueous solution are investigated using two molecular dynamics (MD) simulations: one of 1.4 ns length and one of 0.8 ns length in which atom-atom distance bounds derived from NMR spectroscopy are included in the potential energy function to make the trajectory satisfy these experimental data more closely. The simulated properties of BPTI are compared with crystal and solution structures of BPTI, and found to be in agreement with the available experimental data. The best agreement with experiment was obtained when atom-atom distance restraints were applied in a time-averaged manner in the simulation. The polypeptide segments found to be most flexible in the MD simulations coincide closely with those showing differences between the crystal and solution structures of BPTI. © 1995 Wiley-Liss, Inc.  相似文献   

17.
Summary A Kunitz-type inhibitor family has been biochemically and histochemically characterized in bovine liver. This family includes the well-known pancreatic trypsin inhibitor (BPTI) and three BPTI-related molecular forms (isoinhibitors I, II and III). The purification of the inhibitors was performed by affinity chromatography on immobilized trypsin followed by fast protein liquid chromatography. The inhibitors were identical to those identified previously in bovine spleen and lung. Light immunohistochemical experiments were done by a streptavidin-biotin-peroxidase method using two different immunoglobulin preparations, which selectively discriminated between BPTI and the other isoinhibitors. BPTI-related immunoreactivity was found exclusively at the level of isolated cells, of which many were identified as mast cells by toluidine blue staining. By contrast, isoinhibitor-related immunoreactivity showed a more widespread distribution, including hepatocytes, mast cells and biliary duct epithelial cells. Finally, specific immunoreactivity was also present in plasma. These results suggest that: i) BPTI and related isoinhibitors may be involved in the regulation of the activity of some mast cell proteases, as it happens in other bovine organs (Businaro et al. 1987, 1988); ii) BPTI isoinhibitors, but not BPTI itself, may also control proteolytic activities in hepatic specific structures (hepatocytes and biliary duct epithelial cells).  相似文献   

18.
D Amir  S Krausz  E Haas 《Proteins》1992,13(2):162-173
The structure of BPTI and reduced BPTI in concentrated guanidinium HCl (GUHCl) in the presence of glycerol has been probed by measurements of dynamic nonradiative excitation energy transfer between probes attached to its amino groups. Interprobe distance distributions were obtained from analysis of donor fluorescence decay curves and used to characterize local structures in unordered states of the protein. Site specifically fluorescently labeled BPTI derivatives (1-n)BPTI (n = 15, 20, 41, 46) were used, each carrying a 2-methoxy-naphthyl-1-methylenyl group (MNA) at the N-terminal amino group of arg1 and 7-(dimethylamino)-coumarin-4-yl-acetyl residue (DA-coum) at one of its epsilon-NH2 groups of the lysine side chains. Analysis of donor fluorescence decay kinetics gave the interprobe distance distributions in the native and denatured states. The N-terminal-segment, residues 1-15, is in an extended conformation (with an average interprobe distance of 34 +/- 2 A) in the native state. Upon unfolding by reduction with DTT or beta-mercapto ethanol in 6 M GUHCl/glycerol mixture, the conformation of this segment relaxed to a state characterized by a reduced average interprobe distance and a larger width of the distances distribution. The average distance between residues 1 and 26, i.e., between the N-terminus and the turn of the twisted beta sheet element (residues 18-35), increased upon unfolding. At -30 degrees C in the above solvent, the distribution between these two sites was probably composed of two conformational subpopulations. About 45 +/- 20% of the molecules were characterized by a short interprobe distance (like the native state) representing a compact conformation, and 55 +/- 20% of the molecules showed large interprobe distances representing an expanded (unfolded) conformation. Thus local structures seem to exist in reduced denatured BPTI even under denaturing conditions in 6 M GUHCl/glycerol mixtures. Some of those structures are unstable in guanidinium isothiocyanate (GUSCN). The method introduced here is suitable for probing local structures and very long range interactions in unfolded proteins and for search for folding initiation sites (FISs) and early folding intermediates.  相似文献   

19.
There is increasing evidence that protein folding and protein export are competing processes in prokaryotic cells. Virtually all secretion studies reported to date, however, have employed proteins that are relatively uncharacterized in terms of their folding behavior and three-dimensional structure. In contrast, the structural and biochemical parameters governing the folding of bovine pancreatic trypsin inhibitor (BPTI) and several of its mutants have been studied intensively. We therefore undertook a study of the secretion behavior in Escherichia coli of recombinant BPTI and its mutants. Wild-type BPTI and two well-characterized folding mutants (C14A, C38A)BPTI and (C30A, C51A)BPTI (missing the 14-38 and 30-51 disulfide bonds, respectively), were investigated by analyzing their expression fused to an E. coli signal sequence or to two synthetic IgG-binding domains of staphylococcal protein A. Both disulfide mutants are destabilized relative to wild-type BPTI and exhibit markedly altered folding kinetics: one (C14A, C38A) folds more slowly than wild-type BPTI and the other (C30A, C51A) unfolds more rapidly. Both mutants were observed to be exported 3-10 times more efficiently than the wild-type molecule. Moreover, the levels of unprocessed preprotein in the cytoplasm were severalfold higher for the wild-type fusion than for the fusion to the two folding mutants. Intracellular degradation of the BPTI moiety was also observed. These results are consistent with traffic of intracellular BPTI preproteins on at least three routes along the secretory pathway: (a) facile secretion of unfolded material, (b) intracellular folding leading to secretion blockage, and (c) degradation followed by export of truncated molecules. A novel feature of these findings is the implication that disulfide bonds can form in the bacterial cytoplasm and lead to secretion incompetence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号