首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The presence of 6-methyladenine and 5-methylcytosine at Dam (GATC) and Dcm (CCA/TGG) sites in DNA of mycobacterial species was investigated using isoschizomer restriction enzymes. In all species examined, Dam and Dcm recognition sequences were not methylated indicating the absence of these methyltransferases. On the other hand, high performance liquid chromatographic analysis of genomic DNA from Mycobacterium smegmatis and Mycobacterium tuberculosis showed significant levels of 6-methyladenine and 5-methylcytosine suggesting the presence of DNA methyltransferases other than Dam and Dcm. Occurrence of methylation was also established by a sensitive genetic assay.  相似文献   

2.
Chlamydia trachomatis is a Gram-negative eubacterium with a dimorphic developmental cycle and obligate intracellular growth in the eucaryotic host. The Dam transmethylase of Escherichia coli methylates at the N6 position of adenine in the sequence 5'-GATC-3' and the Dcm transmethylase adds methyl groups to the C5 position of the internal cytosines in the sequences 5'-CCWGG-3'. In contrast to E. coli, C. trachomatis DNA appears to have unmethylated Dam sites and only low level Dcm methylation.  相似文献   

3.
A temperature-sensitive methionine auxotroph of Neurospora crassa was found in a collection of conditional mutants and shown to be deficient in DNA methylation when grown under semipermissive conditions. The defective gene was identified as met-3, which encodes cystathionine-gamma-synthase. We explored the possibility that the methylation defect results from deficiency of S-adenosylmethionine (SAM), the presumptive methyl group donor. Methionine starvation of mutants from each of nine complementation groups in the methionine (met) pathway (met-1, met-2, met-3, met-5, met-6, met-8, met-9, met-10 and for) resulted in decreased DNA methylation while amino acid starvation, per se, did not. In most of the strains, including wild-type, intracellular SAM peaked during rapid growth (12-18 h after inoculation), whereas DNA methylation continued to increase. In met mutants starved for methionine, SAM levels were most reduced (3-11-fold) during rapid growth while the greatest reduction in DNA methylation levels occurred later. Addition of 3 mM methionine to cultures of met or cysteine-requiring (cys) mutants resulted in 5-28-fold increases in SAM, compared with wild-type, at a time when DNA methylation was reduced approximately 40%, suggesting that the decreased methylation during rapid growth in Neurospora is not due to limiting SAM. DNA methylation continued to increase in a cys-3 mutant that had stopped growing due to methionine starvation, suggesting that methylation is not obligatorily coupled to DNA replication in Neurospora.  相似文献   

4.
ABSTRACT: BACKGROUND: Industrial production of biofuels and other products by cellulolytic microorganisms is of interest but hindered by the nascent state of genetic tools. Although a genetic system for Clostridium thermocellum DSM1313 has recently been developed, available methods achieve relatively low efficiency and similar plasmids can transform C. thermocellum at dramatically different efficiencies. RESULTS: We report an increase in transformation efficiency of C. thermocellum for a variety of plasmids by using DNA that has been methylated by Escherichia coli Dam but not Dcm methylases. When isolated from a dam+ dcm+ E. coli strain, pAMG206 transforms C. thermocellum 100-fold better than the similar plasmid pAMG205, which contains an additional Dcm methylation site in the pyrF gene. Upon removal of Dcm methylation, transformation with pAMG206 showed a four- to seven-fold increase in efficiency; however, transformation efficiency of pAMG205 increased 500-fold. Removal of the Dcm methylation site from the pAM205 pyrF gene via silent mutation resulted in increased transformation efficiencies equivalent to that of pAMG206. Upon proper methylation, transformation efficiency of plasmids bearing the pMK3 and pB6A origins of replication increased ca. three orders of magnitude. CONCLUSION: E. coli Dcm methylation decreases transformation efficiency in C. thermocellum DSM1313. The use of properly methylated plasmid DNA should facilitate genetic manipulation of this industrially relevant bacterium.  相似文献   

5.
The DNA of Serratia marcescens has N6-adenine methylation in GATC sequences. Among 2-aminopurine-sensitive mutants isolated from S. marcescens Sr41, one was identified which lacked GATC methylation. The mutant showed up to 30-fold increased spontaneous mutability and enhanced mutability after treatment with 2-aminopurine, ethyl methanesulfonate, or UV light. The gene (dam) coding for the adenine methyltransferase (Dam enzyme) of S. marcescens was identified on a gene bank plasmid which alleviated the 2-aminopurine sensitivity and the higher mutability of a dam-13::Tn9 mutant of Escherichia coli. Nucleotide sequencing revealed that the deduced amino acid sequence of Dam (270 amino acids; molecular mass, 31.3 kDa) has 72% identity to the Dam enzyme of E. coli. The dam gene is located between flanking genes which are similar to those found to the sides of the E. coli dam gene. The results of complementation studies indicated that like Dam of E. coli and unlike Dam of Vibrio cholerae, the Dam enzyme of S. marcescens plays an important role in mutation avoidance by allowing the mismatch repair enzymes to discriminate between the parental and newly synthesized strands during correction of replication errors.  相似文献   

6.
The frequency and distribution of methylated cytosine (5-MeC) at CC T A GG (Dcm sites) in 49 E. coli DNA loci (207,530 bp) were determined. Principal observations of this analysis were: (1) Dcm frequency was higher than expected from random occurrence but lower than calculated with Markov chain analysis; (2) CCTGG sites were found more frequently in coding than in noncoding regions, while the opposite was true for CCAGG sites; (3) Dcm site distribution does not exhibit any identifiably regular pattern on the chromosome; (4) Dcm sites at oriC are probably not important for accurate initiation of DNA replication; (5) 5-MeC in codons was more frequently found in first than in second and third positions; (6) there are probably few genes in which the mutation rate is determined mainly by DNA methylation. It is proposed that the function of Dcm methylase is to protect chromosomal DNA from restriction-enzyme EcoRII. The Dcm methylation contribution to determine frequency of oligonucleotides, mutation rate, and recombination level, and thus evolution of the E. coli genome, could be interpreted as a consequence of the acquisition of this methylation.Correspondence to: M.C. Gómez-Eichelmann  相似文献   

7.
Q Liu  X Chen  X Zhao  Y Chen  D Chen 《Gene》1992,113(1):89-93
This study is to extend our earlier observation that Dam and Dcm methylation outside the PvuII recognition sequence inhibited PvuII cleavage in one of the three PvuII sites of pGEM4Z-ras DNA. In this paper, a new recombinant plasmid DNA, pGEM4-SV40ori-anti-ras, was constructed which has only two PvuII sites, I and II. The Dam and Dcm-methylated and unmethylated DNAs were produced in Escherichia coli and linearized by ScaI. The DNA molecules were digested with different amounts of PvuII. The results show that by comparing the DNA fragment number and intensity of the partial and final products in agarose gel, PvuII site I on the methylated DNA molecule was digested four- to eight-fold more slowly than site II. In the unmethylated plasmid DNA, the two PvuII sites were cleaved at about the same rate. The difference was caused only by methylation of Dam and Dcm sites outside the PvuII recognition sequence. A methylated Dam site immediately adjacent to the less efficiently cut PvuII site I may be responsible for the inhibitory effect. We suggest that a new parameter, involving methylation of sites outside the recognition sequence, be considered in kinetic experiments on cleavage.  相似文献   

8.
9.
Bacteriophage T4 codes for a DNA-[N6-adenine] methyltransferase (Dam) which recognizes primarily the sequence GATC in both cytosine- and hydroxymethylcytosine-containing DNA. Hypermethylating mutants, damh, exhibit a relaxation in sequence specificity, that is, they are readily able to methylate non-canonical sites. We have determined that the damh mutation produces a single amino acid change (Pro126 to Ser126) in a region of homology (III) shared by three DNA-adenine methyltransferases; viz, T4 Dam, Escherichia coli Dam, and the DpnII modification enzyme of Streptococcus pneumoniae. We also describe another mutant, damc, which methylates GATC in cytosine-containing DNA, but not in hydroxymethylcytosine-containing DNA. This mutation also alters a single amino acid (Phe127 to Val127). These results implicate homology region III as a domain involved in DNA sequence recognition. The effect of several different amino acids at residue 126 was examined by creating a polypeptide chain terminating codon at that position and comparing the methylation capability of partially purified enzymes produced in the presence of various suppressors. No enzyme activity is detected when phenylalanine, glutamic acid, or histidine is inserted at position 126. However, insertion of alanine, cysteine, or glycine at residue 126 produces enzymatic activity similar to Damh.  相似文献   

10.
Deoxycytosine methylase (Dcm) enzyme activity causes mutagenesis in vitro either directly by enzyme-induced deamination of cytosine to uracil in the absence of the methyl donor, S-adenosylmethionine (SAM), or indirectly through spontaneous deamination of [5-methyl]cytosine to thymine. Using a Lac reversion assay, we investigated the contribution of the first mechanism to Dcm mutagenesis in vivo by lowering the levels of SAM. Escherichia coli SAM levels were lowered by reducing SAM synthetase activity via the introduction of a metK84 allele or by hydrolyzing SAM using the bacteriophage T3 SAM hydrolase. The metK84 strains exhibited increased C-to-T mutagenesis. Expression of the T3 SAM hydrolase gene, under the control of the arabinose-inducible P(BAD) promoter, effectively reduced Dcm-mediated genomic DNA methylation. However, increased mutagenesis was not observed until extremely high arabinose concentrations were used, and genome methylation at Dcm sites was negligible.  相似文献   

11.
On the mechanism of DNA-adenine methylase   总被引:10,自引:0,他引:10  
Experiments were performed to determine whether EcoRI methylase catalyzes the transfer of the methyl group of S-adenosylmethionine (a) directly to the N6 of adenine in DNA or (b) initially to N1 to give N1-methyladenine followed by isomerization of the N1-methylamino and 6-NH2 to give N6-methyladenine (Dimroth rearrangement). A facile synthesis of highly enriched [6-15N]deoxyadenosine and a dodecamer substrate of EcoRI methylase with [6-15N]adenine in the methylation site are reported. In the product of EcoRI enzymatic methylation, all of the isotope remains at the N6 position of the N6-methyladenine product. It is concluded that, contrary to existing chemical precedent, the methylation occurs by direct transfer from S-adenosylmethionine to the N6 of adenine in DNA.  相似文献   

12.
13.
Mutants in deoxyadenosine methyltransferase (dam) from many Gram-negative pathogens suggest multiple roles for Dam methylase: directing post-replicative DNA mismatch repair to the correct strand, guiding the temporal control of DNA replication and regulating the expression of multiple genes (including virulence factors) by differential promoter methylation. Dam methylase (HI0209) in strain Rd KW20 was inactivated in Haemophilus influenzae strains Rd KW20, Strain 12 and INT-1; restriction with Dam methylation-sensitive enzymes DpnI and DpnII confirmed the absence of Dam methylation, which was restored by complementation with a single copy of dam ectopically expressed in cis. Despite the lack of increased mutation frequency, the dam mutants had a 2-aminopurine-susceptible phenotype that could be suppressed by secondary mutations in mutS, suggesting a role for Dam in H. influenzae DNA mismatch repair. Invasion of human brain microvascular endothelial cells (HBMECs) and human respiratory epithelial cells (NCI-H292) by the dam mutants was significantly attenuated in all strains, suggesting the absence of a Dam-regulated event necessary for uptake or invasion of host cells. Intracellular replication was inhibited only in the Strain 12 dam mutant, whereas in the infant rat model of infection, the INT-1 dam mutant was less virulent. Dam activity appears to be necessary for both in vitro and in vivo virulence in a strain-dependent fashion and may function as a regulator of gene expression including virulence factors.  相似文献   

14.
Seven transfer ribonucleic acid (tRNA) methylase mutants were isolated from Escherichia coli K-12 by examining the ability of RNA prepared from clones of unselected mutagenized cells to accept methyl groups from S-adenosylmethionine catalyzed by crude enzymes from wild-type cells. Five of the mutants had an altered uracil-tRNA methylase; consequently their tRNA's lacked ribothymidine. One mutant had tRNA deficient in 7-methylguanosine, and one mutant contained tRNA lacking 2-thio-5-methylaminomethyluridine. The genetic loci of the three tRNA methylase mutants were distributed over the E. coli genome. The mutant strain deficient in 7-methylguanosine biosynthesis showed a reduced efficiency in the suppression of amber mutations carried by T4 or lambda phages.  相似文献   

15.
In vivo and in vitro evidence is presented implicating a function of GATC methylation in the Escherichia coli replication origin, oriC, during initiation of DNA synthesis. Transformation frequencies of oriC plasmids into E. coli dam mutants, deficient in the GATC-specific DNA methylase, are greatly reduced compared with parental dam+ cells, particularly for plasmids that must use oriC for initiation. Mutations that suppress the mismatch repair deficiency of dam mutants do not increase these low transformation frequencies, implicating a new function for the Dam methylase. oriC DNA isolated from dam- cells functions 2- to 4-fold less well in the oriC-specific in vitro initiation system when compared with oriC DNA from dam+ cells. This decreased template activity is restored 2- to 3-fold if the DNA from dam- cells is first methylated with purified Dam methylase. Bacterial origin plasmids or M13-oriC chimeric phage DNA, isolated from either base substitution or insertion dam mutants of E. coli, exhibit some sensitivity to digestion by DpnI, a restriction endonuclease specific for methylated GATC sites, showing that these dam mutants retain some Dam methylation activity. Sites of preferred cleavage are found within the oriC region, as well as in the ColE1-type origin.  相似文献   

16.
The N-3 drug resistance (R) factor specifies a deoxyribonucleic acid (DNA)-cytosine methylase and a DNA restriction-modification (hspII) system. We have isolated three independent mutants that are conditionally defective in their ability to modify bacteriophage lambda and to methylate DNA-cytosine residues. The ratio of 5-methylcytosine to N(6)-methyladenine in bacterial DNA and in the DNA of phages lambda and fd was determined after labeling with [methyl-(3)H]methionine at various growth temperatures. Although the ability of the wild-type N-3 factor to modify phage lambda and to methylate DNA-cytosine residues was unaffected with increasing temperature, two of the mutants exhibited a parallel loss in modification and cytosine methylation ability. The ability of the third mutant to carry out these functions was dependent on the presence or absence of an amber suppressor mutation in the host genome. These results offer further support for the notion that hspII modification is mediated by a DNA-cytosine methylase. Evidence is also presented that the modification methylase is responsible for the in vivo methylation of phage fd DNA (which is not subject to hspII restriction in vivo).  相似文献   

17.
The bacteriophage T2 and T4 dam genes code for a DNA (N6-adenine)methyltransferase (MTase). Nonglucosylated, hydroxymethylcytosine-containing T2gt- virion DNA has a higher level of methylation than T4gt- virion DNA does. To investigate the basis for this difference, we compared the intracellular enzyme levels following phage infection as well as the in vitro intrinsic methylation capabilities of purified T2 and T4 Dam MTases. Results from Western blotting (immunoblotting) showed that the same amounts of MTase protein were produced after infection with T2 and T4. Kinetic analyses with purified homogeneous enzymes showed that the two MTases had similar Km values for the methyl donor, S-adenosyl-L-methionine, and for substrate DNA. In contrast, they had different k(cat) values (twofold higher for T2 Dam MTase). We suggest that this difference can account for the ability of T2 Dam to methylate viral DNA in vivo to a higher level than does T4 Dam. Since the T2 and T4 MTases differ at only three amino acid residues (at positions 20 [T4, Ser; T2, Pro], 26 [T4, Asn; T2, Asp], and 188 [T4, Asp; T2, Glu]), we have produced hybrid proteins to determine which residue(s) is responsible for increased catalytic activity. The results of these analyses showed that the residues at positions 20 and 26 are responsible for the different k(cat) values of the two MTases for both canonical and noncanonical sites. Moreover, a single substitution of either residue 20 or 26 was sufficient to increase the k(cat) of T4 Dam.  相似文献   

18.
19.
Escherichia coli mutants deficient in deoxyuridine triphosphatase.   总被引:15,自引:12,他引:3       下载免费PDF全文
Mutants deficient in deoxyuridine triphosphatase (dUTPase) were identified by enzyme assays of randomly chosen heavily mutagenized clones. Five mutants of independent origin were obtained. One mutant produced a thermolabile enzyme, and it was presumed to have a mutation in the structural gene for dUTPase, designated dut. The most deficient mutant had the following associated phenotypes: less than 1% of parental dUTPase activity, prolonged generation time, increased sensitivity to 5'-fluorodeoxyuridine, increased rate of spontaneous mutation, increased rate of recombination (hyper-Rec), an inhibition of growth in the presence of 2 mM uracil, and a decreased ability to support the growth of phage P1 (but not T4 or lambda). This mutation also appeared to be incompatible with pyrE mutations. A revertant selected by its faster growth had regained dUTPase activity and lost its hyper-Rec phenotype. Many of the properties of the dut mutants are compatible with their presumed increased incorporation of uracil into DNA and the subsequent transient breakage of the DNA by excision repair.  相似文献   

20.
In contrast to Escherichia coli and Salmonella typhimurium, Bacillus subtilis could convert ethionine to S-adenosylethionine (SAE), as can Saccharomyces cerevisiae. This conversion was essential for growth inhibition by ethionine because metE mutants which were deficient in S-adenosylmethionine synthetase activity, were resistant to 10 mM ethionine and converted only a small amount of ethionine to SAE. Another mutation (ethA1) produced partial resistance to ethionine (2 mM) and enabled continual sporulation in glucose medium containing 4 mM DL-ethionine. This sporulation induction probably resulted from the effect of SAE, since it was abolished by the addition of a metE1 mutation. The induction of sporulation was not simply controlled by the ratio of SAE to S-adenosylmethionine, but apparently depended on another effect of the ethA1 mutation, which could be demonstrated by comparing the restriction of clear plaque mutants of bacteriophage phi 105 grown in an ethA1 strain with the restriction of those grown in the standard strain. The phages grown in the ethA1 strain showed increased protection against BsuR restriction. We propose that SAE induces sporulation through the inhibition of a key methylation reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号