首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of a plasma membrane cAMP-phosphodiesterase in cultured ovarian granulosa cells was regulated by follicle-stimulating hormone (FSH) and the gonadotropin-releasing hormone (GnRH) agonist [D-Ala6]des-Gly10-GnRH N-ethylamide (GnRHa). Degradation of cAMP was similar in cultures treated with FSH alone or FSH plus GnRHa when the labeled cyclic nucleotide was added from 24 to 42 h of culture. However, at 48 h and subsequent times of incubation, cAMP phosphodiesterase activity was significantly higher in cells incubated with FSH plus GnRHa. Phosphodiesterase activity was progressively increased by GnRHa concentrations between 10(-13) and 10(-10) M, and was maximally stimulated by 10(-9) M GnRHa. In comparison with control cells, FSH lowered the Vmax of cAMP catabolism by the high (1 microM cAMP substrate) and the low (50 microM) affinity phosphodiesterase, while GnRHa raised enzyme activity toward control levels. These actions of FSH and GnRHa were specific for a plasma membrane phosphodiesterase that was accessible to extracellular cAMP, since extracellular substrate was hydrolyzed, no intracellular uptake of [3H]cAMP was observed, and only a small fraction (10%) of cAMP was catabolized in the incubation medium in the absence of cells. Further, the actions of FSH and GnRHa on the membrane enzyme were the opposite of those observed when total phosphodiesterase activity was measured in cellular sonicates. Hormonal changes in phosphodiesterase activity were not due to leakage of the enzyme from damaged cells since a constant percentage of cAMP hydrolysis in the medium was observed during culture. Analysis of cAMP catabolites in granulosa cells indicated that the phosphodiesterase reaction product, 5'-AMP, was rapidly converted to adenosine by a plasma membrane 5'-nucleotidase, independent of the cellular hormonal status. These results indicate that the opposing actions of FSH and GnRHa upon granulosa cell differentiation include modulation of cAMP degradation at the plasma membrane level.  相似文献   

2.
The hormonal regulation of cAMP-dependent protein kinase was examined in granulosa cells from diethylstilbestrol-implanted immature rats. Follicle-stimulating hormone (FSH) increased the number of available cAMP-binding sites in a dose- and time-dependent manner, with a maximum 4-6-fold increase at 50-100 ng/ml between 6 and 48 h of culture after a transient decrease in available sites during the first 6 h. The potent gonadotropin-releasing hormone (GnRH) agonist [D - Ala6]des - Gly10 - GnRH - N - ethylamide (GnRHa) reduced the FSH-induced increase in cAMP-binding sites by approximately 50% at 24 and 48 h of culture. Photoaffinity labeling with 8-azido-[32P] cAMP revealed the existence of one major cAMP-binding protein (Mr = 55,000 +/- 400) which appeared to be the regulatory (R) subunit of type II cAMP-dependent protein kinase. While FSH induced a 5-10-fold increase in the labeling of R II both in vivo and in vitro, GnRHa reduced the amount of R II induced by FSH in granulosa cells cultured for 48 h. The large increase in R II subunit was not accompanied by a corresponding increase in protein kinase activity, which was only enhanced by 50% after 48 h of culture with FSH. Fractionation of granulosa cell cytosol from FSH-treated ovaries on DEAE-cellulose showed a single peak of cAMP-dependent phosphokinase activity with the elution properties of a type II protein kinase. However, the peak of cAMP binding activity (eluted at 0.20 M KCl) was not coincident with the protein kinase activity. FSH transiently stimulated cAMP-dependent protein kinase activity during the first 10-30 min of culture. GnRHa impaired the FSH-induced early increase in protein kinase activity, causing a delay in activation until 60 min. These findings suggest that a large dose- and time-dependent increase in the content of cAMP-binding sites may be a major factor in cAMP-mediated differentiation of granulosa cells. The inhibitory effect of GnRHa on both FSH-induced protein kinase activation during the first minutes of culture and on FSH-induced R II synthesis during the subsequent 48 h of culture could be crucial events in the prevention of granulosa cell maturation by GnRH agonists.  相似文献   

3.
The effect of an agonistic gonadotropin releasing hormone (GnRH)-analog (D-Ala6, des-Gly10-NH2-GnRH-ethylamide, GnRHa) on granulosa cell steroidogenesis in the presence or absence of follicle-stimulating hormone (FSH) or luteinizing hormone (LH) was studied. Granulosa cells, isolated from preovulatory follicles of pregnant mare's serum gonadotropin (PMSG)-treated immature rats or from the less mature follicles of untreated immature rats, were cultured for a period of 72 h with daily changes of medium, and progesterone and its metabolite, 20 alpha-dihydro-progesterone (20 alpha-OHP), were assayed in the medium. In granulosa cells from preovulatory follicles, LH and FSH caused a much greater stimulation of steroidogenesis than did GnRHa. There appeared to be no interaction between GnRHa and FSH during the first 10 h, but at 24 h and later the presence of GnRHa clearly inhibited the steroidogenic response to LH and FSH. Steroidogenesis in granulosa cells from immature rats was considerably lower and the effects of GnRHa and FSH alone less pronounced. In these cells, FSH-stimulated progesterone secretion was inhibited by GnRHa only at 72 h. In contrast, 20 alpha-OHP secretion in the same cultures was potentiated by the combined presence of FSH and GnRHa. In conclusion, it seems as though the effects of GnRHa on granulosa cell steroidogenesis varies with exposure time, the initial response being stimulatory and the later inhibitory. Furthermore, the response is also to some extent determined by the maturational stage of the granulosa cells.  相似文献   

4.
We wish to use a gonadotrophin-releasing hormone (GnRH) antagonist in the mare as a tool for investigating the control of the oestrous cycle. The aim of this study was to test the effectiveness of the antagonist cetrorelix by testing both in vitro, using perifused equine anterior pituitary cells, and in vivo in seasonally acyclic mares. Pituitary cells were prepared and after 3-4 days incubation, loaded onto columns and given four pulses of GnRH (at 0, 30, 60 and 90 min; dose-response study). After the second GnRH pulse, infusion of cetrorelix began (0, 100, 1000 and 2000 pmol/l) and continued until the end of the experiment. To mimic luteal phase conditions, cells were pre-incubated and perifused with progesterone (25 nmol/l) and GnRH pulses given at 0, 90, 180 and 270 min. Cetrorelix (0 or 1000 pmol/l) began after the second GnRH pulse. Follicle stimulating hormone (FSH) and luteinizing hormone (LH) concentrations were measured in 5 min fractions. Both FSH and LH response areas (above baseline) after GnRH were inhibited by 1000 pmol/l cetrorelix (P < 0.01, P < 0.01, respectively) but not by 100 pmol/l cetrorelix. Similarly, in the presence of progesterone, cetrorelix inhibited the FSH (P < 0.001) and LH (P = 0.0002) response area. Seasonally acyclic mares, pre-treated for 3 days with progesterone (150 mg i.m. per day) were given cetrorelix as (i) a loading dose of 1 microg/kg then infusion at 2.2 ng/(kg min) for 90 min, (ii) a s.c. injection at 20 microg/kg, (iii) infusion at 2.2 ng/(kg min) for 48 h, and (iv) no cetrorelix (control mares). At 90 min, 6, 24 and 48 h after cetrorelix was first administered, mares were given a bolus injection of GnRH (22.2 ng/kg i.v.) and the FSH and LH responses measured. All doses of cetrorelix inhibited the FSH response at 90 min. The response was no longer suppressed at 6 h in the 90 min infusion group, showing a rapid recovery from inhibition. At 24 h, the FSH responses in the injected and 48 h infusion group were suppressed. The LH concentrations were low and showed no significant changes. This study has defined the time course and dose of cetrorelix with respect to its effect on FSH in the horse. It is concluded that cetrorelix could be used to elucidate the role of FSH in follicular development in cyclic mares.  相似文献   

5.
The induction of luteinizing hormone (LH) receptors was studied in granulosa cells prepared from the ovaries of hypophysectomized diethylstilbestrol-treated immature rats. Incubation of granulosa cells for 48 h with increasing concentrations of follicle-stimulating hormone (FSH) or choleragen caused parallel rises in cAMP levels and LH receptors. These observations, with the finding that 8-Bromo-cAMP also induced LH receptor formation, indicate that hormonal stimulation of LH binding sites is mediated by cAMP. Peptide hormones that inhibited FSH-stimulated cAMP production, such as epidermal growth factor (EGF) and a gonadotropin-releasing hormone agonist (GnRHa), also prevented LH receptor formation. GnRHa and EGF had negligible effects on FSH-stimulated cAMP production from 0 to 24 h of culture, but reduced cAMP accumulation by 80% and 90%, respectively, from 24 to 48 h when the majority of LH receptors appeared. FSH-sensitive adenylate cyclase activity, as measured by the conversion of (3H)-ATP to (3H)-cAMP, was inhibited by GnRHa and EGF at 48 h of culture. EGF and GnRHa also reversed the inhibition of ectophosphodiesterase activity caused by FSH in granulosa cells between 48 and 72 h of culture. Both EGF and GnRHa inhibited induction of LH receptors by 8-Bromo-cAMP, suggesting that their effects are also on cAMP action. Addition of GnRHa, but not EGF, between 36 and 48 h of culture completely prevented further increases in LH receptors induced by 8-Bromo-cAMP, indicating that the inhibitory action of GnRHa can be initiated at later times during granulosa cell differentiation, whereas full expression of EGF action requires a longer period. These results demonstrate that EGF and GnRH inhibit FSH-induced LH receptor formation in the granulosa cell by reducing hormone-dependent cAMP production and also by impairing the ability of cAMP to stimulate LH receptor formation.  相似文献   

6.
To investigate the mechanisms by which GnRH regulates FSH production in the human fetus, dispersed pituitary cells from second trimester human fetuses were cultured on surface-modified plates. Exposure of cells to GnRH [(10(-8) and 10(-7) mol/L), study I] or [D-Ala6]des-Gly10-GnRH ethylamide (DALA) [(10(-11) to 10(-7) mol/L), study II] for 48 h resulted in an elevation of total FSH which correlated with an increase in releasable, but not nonreleasable, FSH. When pituitary cells were incubated for 24, 48 and 72 h with and without 10(-8) mol/L GnRH (study III), total FSH was significantly increased in cells cultured for 48-72 h without GnRH compared to cells lysed at the beginning of the incubation (p less than 0.001). At all intervals, GnRH significantly enhanced total FSH compared to respective controls (p less than 0.05).  相似文献   

7.
The effects of weekly injections of a gonadotropin-releasing hormone (GnRH) antagonist (GnRHa) ([N-acetyl-DβNal1-D-pCl-Phe2-D-Phe3-D-Arg6-Phe7-Arg8D-Ala10] NH2 GnRH) on pituitary and ovarian function were examined in the marmoset monkey, Callithrix jacchus. In experiment 1, five cyclic females were given weekly injections of vehicle (50% propylene glycol in saline) for 6 weeks followed by GnRHa for 20 weeks, animals receiving either 200 μg GnRHa/injection (n = 2) or 67 μg GnRHa/injection (n = 3) for 10 weeks, after which the treatment was reversed. Bioactive luteinizing hormone (LH) and progesterone (Po) were measured in blood samples (0.2–0.4 ml) collected twice weekly until at least 8 weeks after the last GnRHa injection. GnRHa treatment, timed to begin in the midluteal phase, caused a rapid decline in LH and Po and luteal regression after a single injection (both doses). Po levels were consistently low (<10 ng/ml), and ovulation was inhibited throughout 200 μg treatment in all animals. Short periods of elevated Po (>10 ng/ml) were, however, occasionally seen during 67 μg treatment, indicating incomplete ovarian suppression. Mean LH levels were significantly lower during GnRHa treatment compared with the period of vehicle injection (all animals 200 μg; three animals 67 μg), and there were significant differences in LH levels between GnRHa treatments (200 μg vs. 67 μg) in four animals. Four animals resumed normal ovarian cycles after the end of GnRHa treatment (15/16 days, three animals; 59 days, one animal); the fifth animal died of unknown causes 32 days after the last GnRHa injection. In a second experiment, pituitary responsiveness to exogenous GnRH was tested 1 day after a single injection of vehicle or antagonist (200 or 67 μg). Measurement of bioactive LH indicated that pituitary response to 200 ng native GnRH was significantly suppressed in animals receiving the antagonist, the degree of suppression being dose related. A third experiment examined the effect of four weekly injections of 200 μg GnRHa on follicular size and granulosa cell responsiveness to human follicle-stimulating hormone (hFSH) in vitro. Follicular development beyond 1 mm was inhibited by GnRHa treatment (preovulatory follicles normally 2-4 mm) although granulosa cell responsiveness to FSH during 48 hr of culture was not impaired. These results suggest that the GnRHa-induced suppression of follicular development and ovulation was mediated primarily by an inhibition of pituitary gonadotropin secretion and not by a direct action at the level of the ovary.  相似文献   

8.
Gonadotropin-releasing hormone (GnRH) and related peptides are implicated in the local control of rat ovarian function, but evidence to date for direct effects of such peptides on primate ovarian cells is equivocal. In contrast to rat ovaries, where GnRH action is mediated through specific, high-affinity GnRH receptors, no such binding sites have been identified in primate tissue. Using undifferentiated granulosa cells from immature follicles in cyclic (luteal phase) marmoset ovaries, we have observed direct suppression of human (h) FSH-induced steroidogenesis by GnRH analogs in vitro. Granulosa cells from immature (less than 1 mm diameter) follicles were incubated for 4 days in the presence of hFSH and testosterone (aromatase substrate) to stimulate cyclic AMP (cAMP) production and steroidogenesis. The additional presence of GnRH alone (up to 10 microM) had no effect on FSH action. However, the GnRH agonist, [D-Ser(But)6]GnRH 1-9)-ethylamide (Buserelin, 0.1 microM-10 microM), caused time- and dose-dependent inhibition of estradiol (maximum inhibition = 79%; ED50 = 0.55 microM) and progesterone production (maximum inhibition = 93%; ED50 = 0.1 microM). Accumulation of cAMP was also inhibited by up to 54%. Paradoxically, a GnRH antagonist [( N-Ac-D-Nal(2)1,D-pCl-Phe2, D-Trp3, D-hArg(Et2)6, D-Ala10]-GnRH; 10 microM) alone also inhibited hFSH-stimulated cAMP and steroid production by 40% and 70%, respectively. Moreover, the suppressive effects of the GnRH agonist on granulosa cell functions were augmented by the presence of the GnRH antagonist (10 microM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
A J Hsueh  N C Ling 《Life sciences》1979,25(14):1223-1229
We have recently demonstrated that gonadotropin releasing hormone (GnRH) acts directly on ovarian granulosa cells to inhibit the follicle stimulating hormone (FSH)-induced increase in granulosa cell steroidogenesis invitro. A GnRH antagonist, [D-pGlu1, D-Phe2, D-Trp3,6] GnRH (A), which is known to antagonize GnRH-stimulated gonadotropin release by cultured pituitary cells, was tested in the granulosa cell system. GnRH (10?8M) inhibited estrogen and progesterone production by FSH-treated granulosa cells invitro, whereas the antagonist A (10?6M) did not affect FSH stimulation of steroidogenesis. Antagonist A, when added together with GnRH and FSH, blocked the GnRH inhibition of FSH-induced steroidogenesis. Estrogen and progesterone production by granulosa cells was increased by 50% at a molar ratio (IDR50) of 201and121 ([antagonist]/[GnRH]), respectively. At 10?6M, antagonist A completely prevented the GnRH (10?8M) inhibition. A similar effect of antagonist A was seen in FSH-induced increase of luteinizing hormone (LH) receptor content. FSH treatment for 2 days invitro induced an 8-fold increase in LH receptor content in cultured granulosa cells; concomitant treatment with 10?8M GnRH completely inhibited the FSH effect. Antagonist A (10?6M), by itself, had no effect on the FSH action. However, when added together with FSH and GnRH, antagonist A completely abolished the inhibitory effect of GnRH. These results demonstrate that the direct inhibitory effect of GnRH on granulosa cell function can be prevented by a GnRH antagonist and that the GnRH action at the ovarian level may require stringent stereospecific interactions of these peptides with putative GnRH recognition sites.  相似文献   

10.
The effects of RU 486 on the modulation of LH release by progesterone were investigated in cultured anterior pituitary cells from ovariectomized adult female rats. The inhibitory effect of progesterone on LH secretion was demonstrable in estrogen-treated pituitary cells, in which addition of 10(-6) M progesterone to cells cultured in the presence of 10(-9) M estradiol for 52 h reduced the LH response to GnRH (10(-11) to 10(-7) M). When RU 486 was superimposed upon such combined treatment with estradiol and progesterone, the suppressive effect of progesterone on GnRH-induced LH release was completely abolished. The converse (facilitatory) effect of progesterone on LH secretion was observed in pituitary cells pretreated with 10(-9) M estradiol for 48 h and then with 10(-6) M progesterone for 4 h. When RU 486 was added together with progesterone during the 4 h treatment period, the facilitatory effect of progesterone was blocked and LH release fell to below the corresponding control value. The direct effect of RU 486 on LH secretion in the absence of exogenous progesterone was evaluated in cells cultured in the absence or presence of 10(-9) M estradiol and then treated for 4 to 24 h with increasing concentrations of RU 486 (10(-12) to 10(-5) M) and stimulated with GnRH (10(-9) M) during the last 3 h of incubation. In estrogen-deficient cultures, 4 h exposure to RU 486 concentrations of 10(-6) M and above decreased the LH response to GnRH by up to 50%. In cultures pretreated with 10(-9) M estradiol, GnRH-stimulated LH responses was inhibited by much lower RU 486 concentrations, of 10(-9) M and above. After 24 h of incubation the effects of RU 486 were similar in control and estradiol-pretreated pituitary cell cultures. Thus, RU 486 alone has a significant inhibitory effect on LH secretion that is enhanced in the presence of estrogen. The antiprogestin is also a potent antagonist of both the inhibitory and the facilitatory actions of progesterone upon pituitary gonadotropin release in vitro.  相似文献   

11.
Gonadotropin-releasing hormone (GnRH) has been found to be expressed within the ovary and to modulate cell differentiation in ovarian cells. In the present study we have analyzed the influence of GnRH on DNA synthesis in rat granulosa cells. Cells were obtained from immature DES-treated rats and cultured in defined medium (DMEM:F12) containing combinations of FSH, estradiol, and transforming growth factor-β (TGF-β), both in the presence and absence of GnRH. A GnRH analog, Leuprolide (GnRHa), caused a dose-dependent inhibition of 3H-thymidine incorporation in cells cultured in the presence of FSH (20 ng/ml) and TGFβ (2.5 ng/ml), at concentrations as low as 5 × 10−11 M. Similarly, a complete inhibition of hormonally stimulated DNA synthesis were observed with another analog (Buserelin, ED50 = 1.58 ± 0.22 × 10−10 M) and native GnRH (ED50 = 1.4 ± 0.3 × 10−6 M). A competitive antagonist of GnRH (Antide) was used to neutralize the GnRH agonist effects. Antide 10−8 M could prevent the inhibition elicited by 10−7 M of Leuprolide. These results suggest that GnRH may play a role in the regulation of rat granulosa cell proliferation during follicular development. Mol. Reprod. Dev. 47: 170–174, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
In an in vitro bioassay using rat pituitary cell cultures the effect of contraceptive progestins was tested on basal and gonadotropin-releasing hormone (GnRH)-induced luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion in vitro. Progestins diminished gonadotropin release in pituitary cells stimulated with GnRH, but did not alter basal values. This inhibitory effect was dose dependent in a range of 10(-10)-10(-5) M tested and the inhibitory action of most of the progestins examined was more potent than that of progesterone. The maximal reduction of LH and FSH values was by 60% of GnRH-induced control levels. Progestins also caused a shift in sensitivity of cells to GnRh (10(-12)-10(-6) M). When time dependence was investigated, some progestins potentiated GnRH effect on gonadotropins in pituitary cell cultures pre-incubated for a short time (4 h) with steroids. More prolonged pre-incubations from 23 to 71 h resulted in a progressive suppression of LH and FSH response to GnRH (10(-7) M). In order to examine intracellular effects, cells were pretreated with progestins and inositol phosphate metabolism was investigated. The data obtained in pituitary cells give evidence that polyphosphoinositide breakdown is potentially an early step in the action of GnRH on gonadotropin secretion by providing diacylglycerol and inositol phosphates. Addition of gonadotropin-releasing hormone to myo-2[3H]inositol-prelabeled rat pituitary cells in primary culture evoked a dose-dependent increase of the accumulation of [3H]inositol phosphates with a rise of inositol triphosphate, inositol diphosphate and inositol monophosphate within 1 min. Using one contraceptive progestin, gestoden, inositol phosphate production was inhibited by 80% compared to controls of GnRH-treated cells without the addition of steroids. The data obtained in this study suggest that this in vitro bioassay using rat pituitary cells is a useful tool in testing progestational compounds regarding their potency on gonadotropin release. In addition, these results show that one possible site of interference of progestins with GnRH-induced gonadotropin secretion may involve polyphosphoinositide breakdown.  相似文献   

13.
The GnRH analogue [D-Ser(t-Bu)6]des-Gly10-GnRH-N-ethylamide (GnRHa, 2 micrograms/rat) or hCG (4 i.u./rat) was administered to hypophysectomized, PMSG-primed immature female rats. Oocyte maturation was initially detected by 2 h after GnRHa administration but the response to hCG was observed only after 4 h. Initiation of GnRHa-induced ovulation also preceded the response to hCG by 2 h. Maximal response to both these hormones was obtained at 10 and 14 h after hormone administration for oocyte maturation and ovulation respectively. The number of oocytes ovulated after GnRHa was significantly lower than that with hCG (29 +/- 4 and 50 +/- 7 per rat respectively; P less than 0.05). Expansion of the cumulus mass and secretion of mucoid material, which are characteristic responses to LH, were also observed after GnRHa administration. However, while the action of 5 micrograms ovine LH/ml on the cumulus cells was mediated by cAMP, no accumulation of the nucleotide could be detected in follicles exposed to GnRHa (10(-7) M). We conclude that even though GnRHa and LH/hCG seem to elicit similar responses in the ovarian follicle they differ in their kinetics, their efficiency and the mediator of their action.  相似文献   

14.
When Sertoli cells were cultured in the presence of follicle-stimulating hormone (FSH), a time-and concentration-dependent desensitization of FSH-responsive adenylyl cyclase (AC) was observed. Maximal desensitization (80%) was attained after 6-9 h of incubation with FSH (10 micrograms/ml; NIH-FSH-S12). During 24 h of incubation the concentration of FSH causing a half-maximal desensitization was about 100 ng/ml. Removal of the hormone from the culture medium was associated with a gradual reappearance of the FSH response. Follicle-stimulating hormone-induced desensitization of Sertoli cell AC was specific for homologous hormone, since AC activation by isoproterenol was unaffected. Furthermore, AC activity of control and FSH-desensitized cells was equally activated by GTP and fluoride, showing that the interaction of the guanyl nucleotide regulatory (N) component with the catalytic subunit is not affected during FSH-induced desensitization. A loss in specific FSH binding was detected after 9 and 24 h of exposure to FSH, but not at shorter times of incubation. Desensitization of Sertoli cell AC to both FSH and isoproterenol stimulation could also be achieved by dibutyryl cyclic AMP (dbcAMP); however, a 30-40% desensitization required a high nucleotide concentration (1 mM) and a long incubation time (24 h). These results show that desensitization of Sertoli cell AC by FSH is associated with normal function of the N component, and precedes any significant loss in specific FSH binding sites. Furthermore, exogenous addition of dbcAMP (1 mM) did not cause the same effects on Sertoli cell AC as did FSH.  相似文献   

15.
The effect of follicle-stimulating hormone (FSH) and testosterone (T) on rat granulosa cell progestin metabolism was investigated by incubation of the cells for 24 h with FSH and/or T and subsequent reincubation with an appropriate rabiolabeled steroid for 3 h. Exposure to varying concentrations of FSH (8-1000 ng/ml) and T (4-500 nM) decreased overall 4-[14C] progesterone utilization and accumulation of 20 alpha-reduced metabolites of progesterone in a dose-related manner. The accumulation of 5 alpha-reduced metabolites was not markedly changed by FSH and T treatments. Treatments with FSH and/or T decreased utilization of all progestins studied: progesterone by 30-50%, 20 alpha-hydroxy-4-pregnen-3-one by 23-31%, 3 alpha-hydroxy-5 alpha-pregnan-20-one by 41-64%, and 5 alpha-pregnane-3 alpha,20 alpha-diol by 26-34%. The greatest effects were observed following FSH + T treatments. Decreased utilization of substrates was associated with the decrease of 20 alpha-hydroxy-steroid dehydrogenase activity; the conversion of progesterone to 20 alpha-hydroxy-4-pregnen-3-one was decreased by 44-62%, the conversion of 20 alpha-hydroxy-4-pregnen-3-one to progesterone was decreased by 41-61%, the conversion of 3 alpha-hydroxy-5 alpha-pregnan-20-one to 5 alpha-pregnane-3 alpha,20 alpha-diol was decreased by 42-69%, and the conversion of 5 alpha-pregnane-3 alpha,20 alpha-diol to 3 alpha-hydroxy-5 alpha-pregnan-20-one was decreased by 53-60%. The incubation of granulosa cells with cyanoketone (10(-6)M), an inhibitor of delta 5,3 beta-hydroxysteroid dehydrogenase, virtually eliminated de novo progesterone production but did not alter the inhibitory effect of FSH and T on radiolabeled progesterone utilization and accumulation of 20 alpha-reduced metabolites, indicating that the observed effects are not influenced by endogenous production of progesterone. It was concluded from these studies that both FSH and testosterone inhibit the 20 alpha-hydroxysteroid dehydrogenase activity and consequently decrease progesterone catabolism by granulosa cells.  相似文献   

16.
The gonadotrophic regulation of progesterone production by rat granulosa cells was examined in a chemically-defined medium containing FSH, dibutyryl cyclic AMP [Bu)2cAMP) and the calcium ionophore, A23187. FSH and A23187 alone significantly enhanced the production of pregnenolone, progesterone and its metabolite, 20 alpha-hydroxypregn-4-en-3-one (20 alpha-OH-P) from endogenous substrate(s). Stimulation of progesterone production by A23187 was accompanied by an increase in 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) but not 20 alpha-hydroxysteroid dehydrogenase (20 alpha-HSD) activity, as attested by enhancement of the metabolism of exogenous pregnenolone to progesterone but not of progesterone to 20 alpha-OH-P. In contrast, although (Bu)2cAMP increased pregnenolone and progesterone production and the metabolism of exogenous progesterone to 20 alpha-OH-P, it failed to stimulate the conversion of exogenous pregnenolone to progesterone. The increase in progesterone production and in the conversion of exogenous pregnenolone to progesterone by FSH and A23187 was concentration- and time-dependent. Whereas maximal stimulation of de-novo progesterone synthesis by FSH was evident by 6 h (earliest time examined), a significant increase in the conversion of exogenous pregnenolone to progesterone in the presence of FSH or the ionophore was not noted until 12 h of incubation. Although a small but significant increase in progesterone production was also noted as early as 6 h of incubation in the presence of the calcium ionophore, this was markedly smaller than that elicited by FSH. We conclude that the calcium ionophore A23187 and (Bu)2cAMP have similar as well as distinct effects on progesterone production in rat granulosa cells in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Suspensions of freshly isolated rat granulosa cells were used to study endocytosis and processing of radioiodinated ovine follicle-stimulating hormone (I-oFSH) and to analyze the dynamics of its receptor. Ovine FSH was iodinated to a specific activity of 26 microCi/micrograms as determined by radioreceptor self-displacement assays with maximum specific binding to excess membrane receptors of 46%. Radiolabeled oFSH was judged biologically equivalent to the unlabeled hormone since I-oFSH shows saturation-binding kinetics and stimulates steroidogenesis in a similar dose-related manner to unlabeled oFSH. Experiments designed to study the extent and time course of degradation involved continuous exposure of isolated granulosa cells to I-oFSH. Saturation of membrane receptors was achieved within 1.5 h of incubation, and internalization of FSH occurred in a linear manner for up to 6 h. The rate of internalization was equivalent to 2,780 FSH molecules/cell/h. Degradation of FSH became apparent after 6 h of incubation and increased to 86% of total cellular-associated radioactivity at 22 h. FSH degradation was inhibited by 100 microM chloroquine or 0.45 mM leupeptin. The measurement of cell surface I-oFSH binding in the combined presence of 100 microM chloroquine and 0.5 mM cycloheximide was unchanged for up to 22 h of incubation. This and other receptor binding data suggest that there is no reutilization of FSH receptors. Scatchard analyses of 4 degrees C binding assays on intact cells indicated that a two-site model best fit the data with association constants of K11 = 1.44 (+/- .42) X 10(10) and K12 = 4.35 (+/- .91) X 10(8). Receptor binding and activation studies for progesterone production yielded ED50s of 270 pM and 7.7 pM, respectively, and also indicated that 20% receptor occupancy is sufficient to stimulate maximal progesterone production. We conclude that after the initial binding event, FSH is endocytosed very slowly and is subsequently shuttled to the lysosomal compartment for degradation. The retarded rate of endocytosis may relate to novel pathways of hormone processing.  相似文献   

18.
The influence of endothelin-3 (ET-3) on anterior pituitary hormone secretion was investigated over a wide range of concentrations (from 10(-14) to 10(-6) M) and incubation times (from 4 to 48 hours). ET-3 elicited a concentration-dependent inhibition of prolactin (PRL) secretion and stimulated the release of luteinizing hormone (LH), follicle stimulating hormone (FSH) and thyroid stimulating hormone (TSH) from primary monolayer cultures of anterior pituitary cells derived from female rats. The responsiveness of different pituitary cells to ET-3 differs markedly in terms of onset and duration: the maximal inhibition of PRL secretion occurred after 12 hours and the stimulation of LH, FSH and TSH reached the maximum after 4, 48 and 48 hours of incubation, respectively. These data corroborate the concept that ET-3 has an important role as a neuroendocrine modulator. Moreover, the data presented suggest different intracellular mechanisms underlying ET-3 actions.  相似文献   

19.
The purpose of this study was to investigate whether progesterone exerted progesterone receptor mediated direct effects on the anterior pituitary in the secretion of FSH and whether such effects were mediated through the 5 alpha-reduction of progesterone. Treatment of anterior pituitary dispersed cells for 48 h with 0.5 nM estradiol reduced the ED50 for gonadotropin releasing hormone (GnRH)-stimulated FSH release from 0.58 to 0.36 ng/ml and the ED50 for GnRH-induced LH release from 0.54 to 0.19 ng/ml. When dispersed pituitary cells were treated with 0.5 nM estradiol and exposed to various doses of progesterone for 1 to 6 h, the most consistent rise in basal and GnRH-stimulated FSH release was observed with the 50 nM dose of progesterone with a 3-h exposure period. All three doses of progesterone elevated basal LH and GnRH-stimulated LH was increased by the 50 and 100 nM doses of progesterone during the 3-h period of treatment. Using the 50 nM dose of progesterone, basal and GnRH-stimulated LH was increased after 2, 3 and 6 h of progesterone treatment. When the period of exposure of progesterone was extended to 12, 36 or 48 h, there was a significant inhibition of GnRH-stimulated FSH release. GnRH-stimulated LH release was inhibited at 36 and 48 but not 12 h after progesterone treatment. These studies showed that the effect of progesterone administered for periods of 1 to 6 h enhanced the secretion of LH and FSH whereas progesterone administered for periods beyond 12 h inhibited FSH and LH release by dispersed pituitary cells in culture. These results are similar to those observed in vivo after progesterone treatment. Furthermore estrogen priming of the dispersed pituitary cells was necessary to observe the effects of progesterone. The progesterone antagonist RU486 prevented the progesterone-induced rise in GnRH-stimulated FSH release. Furthermore the 5 alpha-reductase inhibitor N,N-diethyl-4-methyl-3-oxo-4-aza-5 alpha-androstane- 17 beta-carboxamide also prevented the progesterone-induced rise in GnRH-stimulated FSH release in estrogen-treated dispersed pituitary cells. These results indicate that the anterior pituitary is a major site of action of progesterone in the release of FSH and that 5 alpha-reduction of progesterone plays an important role in FSH release.  相似文献   

20.
Previous evidence has shown that prenatal and neonatal exposure to low levels of Pb result in decreased FSH binding and steroidogenesis in the testes at the onset of puberty. The purpose of the present study was to determine by in vitro methods, if Pb acts by interfering directly with hormone binding, cyclic AMP production and steroidogenic enzyme activity. Sertoli cells were isolated from testes of prepubertal rats and cultured in the presence of 2.64 x 10(-4)M of either NaAc (control) or PbAc for 1, 4, 24, 48, 96 or 144 hr. There was no reduction in FSH binding and in FSH-induced cyclic AMP after a 1-4 hr exposure to Pb. After a 24-hr exposure to Pb, the cells exhibited a 10-20% decrease in FSH binding and cyclic AMP production and after 96 hr there was a 75% decrease in these 2 parameters. The inhibition was greater in cells from 16 day old than from 20 day old rats, so that in the former, after a 144 hr exposure the FSH-induced cyclic AMP of the Pb exposed cells was only 3% of the amount produced by the NaAc exposed cells (i.e. a 97% inhibition). After in vitro exposure to Pb for 48 hr, the steroidogenic activity (progesterone conversion to steroid metabolites) of Sertoli cells was significantly reduced and their steroidogenesis was no longer stimulated by FSH. A crude testicular enzyme preparation containing 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) exhibited approximately 25% reduction in activity if the assay buffer contained PbCl2 instead of the equivalent in NaCl. Prolonged in vivo exposure to Pb resulted in approximately 50% reduction in 3 beta-HSD activity. This is the first indication that in the testis Pb may act directly (immediate effect) by suppressing enzyme activities, and indirectly (long term effect) by reducing gonadotropin-receptor binding and the resultant cyclic AMP production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号