首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FITC-insulin binding and endogenous insulin content of Tetrahymena pyriformis, that had been 24 h or 30 min starved, continuously fed or re-fed after starvation was studied by flow cytometry and confocal microscopy. Long starvation elevated both insulin binding and endogenous insulin content of the cells. Short re-feeding after long starvation or short starvation after continuous feeding does not change the situation. Fixed cells also bind FITC-insulin, however, in this case long starvation reduces, and re-feeding after long starvation elevates, the binding, which means that hormone binding by receptors only differs from receptor binding and engulfment (in living cells). The increase of FITC-insulin content in living cells seems to be due to engulfment, rather than by receptor binding. The results point to the unicellular organism's requirement for insulin production and binding in a life-threatening stress situation.  相似文献   

2.
Tetrahymena pyriformis GL cells pretreated (imprinted) and not pretreated with insulin showed dissimilar quantitative relations of FITC-insulin binding. Displacement of FITC-insulin by unlabelled insulin was considerably less in the control than in the imprinted series. The curve for saturation of the binding sites with FITC-insulin resembled a true saturation curve. The imprinted cells bound considerably more hormone in a shorter time than the control cells at identical levels of exposure. The dissociation of bound hormone from the imprinted cells increased over the control at 23 degrees C, and to a still greater degree at 4 degrees C. The effect of the pH of the medium on the dissociation of bound FITC-insulin also differed between the imprinted and not imprinted cells. Thus the proposed cytofluorimetric assay of binding kinetics demonstrated the actual conditions of receptor activity, and indicated that the induced insulin binding sites of Tetrahymena behaved similarly to 'classical' receptors.  相似文献   

3.
The unicellular ciliate Tetrahymena, contains and binds hormones, characteristic of vertebrates. Earlier experiments demonstrated the effect of extremely low concentrations of hormones. In the present experiments, the effect of various hormones (endorphin, serotonin, histamine, insulin and epidermal growth factor [EGF]) in 10(-15) M, or oxytocin, gonadotropin at 0.001 IU concentrations) on the binding of FITC-insulin was studied by using flow cytometry and confocal microscopy, after 1, 5, 15, 30 and 60 min. Six of the seven hormones promptly decreased the cells' hormone binding capacity, the exception being EGF, and in four cases (endorphin, serotonin, insulin and oxytocin) the reduction was enormous. The decreased binding was durable. However, in the case of endorphin and oxytocin after 30 min, and in the case of serotonin after 60 min the binding returned to the control level. In the case of oxytocin after 60 min, binding significantly surpassed the control level. Histamine returned to the control level after 15 min, but after that the binding became even lower. EGF provoked special behaviour: it increased hormone binding after 30 and 60 min. The results call attention to the extreme sensitivity of Tetrahymena receptors to hormonal inductions and to its quick response ability.  相似文献   

4.
Tetrahymena cells treated with insulin in mass cultures were separated to single-cell clones or one of the "sister-cells" of dividing Tetrahymena (in single-cell culture) was treated with insulin. In both cases the FITC-insulin binding of sister-cells were compared. The insulin imprinting significantly increased the insulin binding of cells. There was also a significant difference between the imprinted and not imprinted sisters as well as between the not imprinted sisters. This demonstrates the existence of a difference (in hormone binding) between sister-cells and justifies that the information of the first hormone treatment (imprinting) is not equally divided between the sister-cells.  相似文献   

5.
FITC-insulin binding to previously hormone-treated Tetrahymena was studied by flow cytometry and confocal microscopy. Hormones produced by Tetrahymena were chosen for study and the hormone concentrations were administered between 10(-6) and 10(-21)M for 30 min. Endorphin, serotonin and insulin significantly reduced the hormone binding however histamine did not influence it at all. Endorphin, serotonin and insulin were significantly effective down to 10(-18)M and the effect of insulin and endorphin suggest a similar mechanism. The results call attention to the efficacy of very low hormone concentrations, which can influence the hormone content (earlier experiments) and receptor binding capacity (present study) of a unicellular organism. This seems to be very important, as in wild (natural) conditions the dilution of signaling materials secreted by a water-living protozoan is very high. In addition, the results point to the selectivity of response, as not all of the hormones that deeply influence other physiological indices (e.g. histamine) have an effect on insulin content or insulin receptors.  相似文献   

6.
Gold-labeled insulin is bound first of all to the cilia of the oral field of Tetrahymena. A primary treatment (hormonal imprinting) with insulin increases the binding capacity even after 24h and makes it more sensitive for appearance a week later, within a minute of giving insulin-gold. The food vacuoles contain insulin-gold in pretreated cells or without pretreatment as well, though in imprinted situations the label can be found in pinocytotic vesicles at the bases of cilia in the oral field. Altogether, a functional difference can be observed between the cilia of the oral and non-oral surfaces of Tetrahymena and hormonal imprinting has a specifying effect on the binding of labeled hormone.  相似文献   

7.
The induction of high rates of food vacuole formation in Tetrahymena pyriformis increased the rate of respiration in exponentially growing cells by 17% and in starving cells by 47.5%. The increased rate of oxygen uptake was caused by phagocytosis itself, as shown by comparing the rates of respiration of a Tetrahymena mutant exposed to particles at the permissive or restrictive temperatures for food vacuole formation. During cell division, heat-synchronized cells in rich, particle-supplemented medium showed a significant decrease in the rate of respiration. Furthermore, dimethyl sulphoxide, in concentrations sufficient to block food vacuole formation, suppressed the rate of respiration to a level similar to that of starved cells. Cytochalasin B, fowever, did not reduce the rate of oxygen uptake despite the inability of the cells to complete the formation of food vacuoles during treatment; a possible explanation for this finding is discussed. There was a strong correlation between formation of food vacuoles and a high metabolic rate in Tetrahymena.  相似文献   

8.
G Csaba  P Kovács  I Klein 《Cytobios》1992,69(276):7-13
Tetrahymena cells maintained (starved) in a physiological salt solution showed a considerable decrease in insulin binding capacity. The cells previously imprinted with insulin showed a comparable relative binding decrease after a similar exposure. This change was reversible by prolonged maintenance in plain nutrient medium after which the binding capacity of the imprinted cells increased appreciably over the control. The cells maintained (starved) in salt solution for 2 h were no longer imprintable with insulin; it follows that prolonged starvation not only reduced the recognition potential, but also extinguished the imprintability of Tetrahymena cells.  相似文献   

9.
The pathways by which insulin exits the vasculature to muscle interstitium have not been characterized. In the present study, we infused FITC-labeled insulin to trace morphologically (using confocal immunohistochemical methods) insulin transport into rat skeletal muscle. We biopsied rectus muscle at 0, 10, 30, and 60 min after beginning a continuous (10 mU x min(-1) x kg(-1)), intravenous FITC-insulin infusion (with euglycemia maintained). The FITC-insulin distribution was compared with that of insulin receptors (IR), IGF-I receptors (IGF-IR), and caveolin-1 (a protein marker for caveolae) in skeletal muscle vasculature. We observed that muscle endothelium stained strongly for FITC-insulin within 10 min, and this persisted to 60 min. Endothelium stained more strongly for FITC-insulin than any other cellular elements in muscle. IR, IGF-IR, and caveolin-1 were also detected immunohistochemically in muscle endothelial cells. We further compared their intracellular distribution with that of FITC-insulin in cultured bovine aortic endothelial cells (bAECs). Considerable colocalization of IR or IGF-IR with FITC-insulin was noted. There was some but less overlap of IR or IGF-IR or FITC-insulin with caveolin-1. Immunoprecipitation of IR coprecipitated caveolin-1, and conversely the precipitation of caveolin-1 brought down IR. Furthermore, insulin increased the tyrosine phosphorylation of caveolin-1, and filipin (which inhibits caveolae formation) blocked insulin uptake. Finally, the ability of insulin, IGF-I, and IGF-I-blocking antibody to diminish insulin transport across bAECs grown on transwell plates suggested that IGF-IR, in addition to IR, can also mediate transendothelial insulin transit. We conclude that in vivo endothelial cells rapidly take up and concentrate insulin relative to plasma and muscle interstitium and that IGF-IR, like IR, may mediate insulin transit through endothelial cells in a process involving caveolae.  相似文献   

10.
Two patterns of ConA binding to starved mating types of Tetrahymena pyriformis were observed depending on its time of addition. When ConA was added upon mixing of the mating types, at zero time of conjugation, it was first bound to the oral region and subsequently was taken into intracellular vacuoles. When it was added to conjugants, it was specifically bound as a ring around the conjugation area. The ability of the cells to form vacuoles, assayed by addition of carmine particles, declined prior to pair formation. The relationship between the above phenomena and the ability of ConA to inhibit conjugation is discussed.  相似文献   

11.
Gastrointestinal stability and absorption of insulin in suckling pigs   总被引:2,自引:0,他引:2  
Stability and absorption of orally administered fluorescein-isothiocyanate labeled insulin (FITC-insulin) in the gastrointestinal (GI) tract were investigated in newborn and 3-day-old pigs. The uptake of FITC-insulin by the intestinal epithelial cells was visualized using confocal laser scanning microscopy. Following oral administration, 3 h later 56 and 88% of orally administered fluorescence was found in the GI tract in newborn and 3-day-old piglets, respectively. Chromatographic analysis revealed that 15-37% of fluorescence recovered from the gastric and proximal intestinal contents was eluted in the void volume of a Sephadex G-25 column. It was also observed that oral administration of FITC-insulin at a dose of 100 nmol/kg body weight led to a significant decrease in blood glucose in newborn pigs (P<0. 05) but not in 3-day-old pigs. Microscopic examination showed that FITC-insulin was taken up via the vesicular transport mechanism throughout the whole small intestine but the ileum appeared to be a preferred site for FITC-insulin transport in newborn pigs. In 3-day-old pigs, the uptake of FITC-insulin occurred only in the distal part of the small intestine. These findings suggest that milk-borne insulin may partially survive in the GI lumen and subsequently act on the gastrointestinal tract in suckling piglets, while GI absorption of milk-borne insulin is limited to newborn pigs.  相似文献   

12.
The unicellular Tetrahymena is able to bind the vertebrate hormone insulin, and the binding sites presented by it become amplified under hormonal influence. The increased binding capacity for insulin reappears in many offspring generations. 5-azacytidine inhibits insulin binding and the insulin-induced formation of binding sites as well in the cell generation directly involved in interaction, but enhances insulin binding in the daughter cell generations. The nutrient medium of the cells whose binding capacity was enhanced by azacytidine treatment transmitted the information accounting for increased binding to "virgin" cells not previously treated with azacytidine.  相似文献   

13.
Mutants (NP1 and PSJ5) of Tetrahymena thermophila strains B and D 1968 exist that are unable to construct a functional oral apparatus and form food vacuoles at 37 C but which do so normally at 30 C. Food vacuole-less cells starved in dilute salt solution released similar amounts of acid phosphatase, beta-N-acetyl-glucosaminidase and alpha-glucosidase activity into the medium as wildtype cells during an 8-h period. Actively growing, food vacuole-less cells had approximately 50% less total protein, acid phosphatase, beta-N-acetyl-glucosaminidase, and alpha-glucosidase per cell than wildtype cells after 72-h growth. During this time food vacuole-less cells released significant amounts of the 3 acid hydrolases into the growth medium. For each hydrolase, the total activity released from growing, food vacuole-less cells was less, on a per cell basis, tahn the amount released from food vacuole formers. The proportion of the total activity secreted by the mutant and the wildtype cells was the same for acid phosphatase and beta-N-acetyl-glucosaminidase and somewhat lower for alpha-glucosidase. It is concluded that the release of a significant amount of acid hydrolase activity from Tetrahymena is independent of food vacuole formation and may be analogous to the secretory activity of other nonphagocytic eukaryotic cells.  相似文献   

14.
Na-metavanadate and ouabain that act on Na+K(+)-ATPase had no influence on insulin binding to Tetrahymena immediately after treatment, but after 24 h considerably enhanced the binding capacity of generations of progeny. The increase in binding was of a similar magnitude to that elicited by insulin imprinting. Vanadate failed to increase the imprinting potential of insulin while ouabain even prevented insulin imprinting when administered together with insulin, but, did not affect imprinting when administered after insulin. By analogy with higher organisms it appears that inhibition of Na+K(+)-ATPase plays no role in the insulin-like effect of vanadate on the unicellular Tetrahymena, as judged also from the capacity to bind insulin of the generations of offspring.  相似文献   

15.
Increased hormone levels in Tetrahymena after long-lasting starvation   总被引:1,自引:0,他引:1  
Tetrahymena contains vertebrate hormone-like materials. The level of one of these, insulin increased during starvation in a previous experiment. We hypothesized that other hormones are also influenced by starvation. To prove the hypothesis Tetrahymena pyriformis cultures were (1) starved for 24h; (2) starved for 24h and re-fed for 30min or (3) starved for 30min. Amount and localization of vertebrate-like hormones, produced by Tetrahymena, beta-endorphin, adrenocorticotropin (ACTH), serotonin, histamine, insulin and triiodothyronine (T(3)) were studied by immunocytochemical methods using flow cytometry and confocal microscopy. Long starvation elevated with 50% the hormone levels, while short starvation moderately elevated only the serotonin level in the cells. After short re-feeding endorphin and histamine returned to the basal level, ACTH and serotonin approached the basal level, however, remained significantly higher, while insulin and T(3) stood at the starvation level. The results show that such a stress as long starvation provokes the enhanced production of hormones which likely needed for tolerating the life-threatening effect of stress.  相似文献   

16.
Histidine decarboxylase (HDC) enzyme and its function under hormonal influences were studied in a low level of phylogeny. HDC protein is present in the unicellular ciliate Tetrahymena and its expression was not altered by insulin or histamine treatment. Starvation for 24 h enormously decreased the quantity of histamine in the cells. However, insulin influenced the activity of the HDC enzyme, demonstrated by the seven-fold quantity of histamine in the starved cells after insulin treatment. Insulin also increased the uptake of histamine from the tryptone-yeast extract medium. HDC was found in different parts of the cytoplasm, mainly in the periphery (epiplasm) of the cells. The experiments demonstrated the uptake and synthesis of histamine by Tetrahymena as well as the possibility of hormonal regulation of HDC activity.  相似文献   

17.
As insulin's movement from plasma to muscle interstitium is rate limiting for its metabolic action, defining the regulation of this movement is critical. Here, we address whether caveolin-1 is required for the first step of insulin's transendothelial transport, its uptake by vascular endothelial cells (ECs), and whether IL-6 and TNFα affect insulin uptake or caveolin-1 expression. Uptake of FITC-labeled insulin was measured using confocal microscopy in control bovine aortic ECs (bAECs), in bAECs in which caveolin-1 was either knocked down or overexpressed, in murine ECs from caveolin-1(-/-) mice and in bAECs exposed to inflammatory cytokines. Knockdown of caveolin-1 expression in bAECs using specific caveolin-1 siRNA reduced caveolin-1 mRNA and protein expression by ~ 70%, and reduced FITC-insulin uptake by 67% (P < 0.05 for each). Over-expression of caveolin-1 increased insulin uptake (P < 0.05). Caveolin-1-null mouse aortic ECs did not take up insulin and re-expression of caveolin-1 by transfecting these cells with FLAG-tagged caveolin-1 DNA rescued FITC-insulin uptake. Knockdown of caveolin-1 significantly reduced both insulin receptor protein level and insulin-stimulated Akt1 phosphorylation. Knockdown of caveolin-1 also inhibited insulin-induced caveolin-1 and IGF-1 receptor translocation to the plasma membrane. Compared with controls, IL-6 or TNFα (20 ng/ml for 24 h) inhibited FITC-insulin uptake as well as the expression of caveolin-1 mRNA and protein (P < 0.05 for each). IL-6 or TNFα also significantly reduced plasma membrane-associated caveolin-1. Thus, we conclude that insulin uptake by ECs requires expression of caveolin-1 supporting a role for caveolae mediating insulin uptake. Proinflammatory cytokines may inhibit insulin uptake, at least in part, by inhibiting caveolin-1 expression.  相似文献   

18.
The expression and intracellular localization of the Tetrahymena homolog of 4-hydroxyphenylpyruvate dioxygenase (HPPD) were investigated in wild-type Tetrahymena thermophila strain B1868 VII and the mutant strains IIG8, defective in food vacuole formation, MS-1, blocked in secretion of lysosomal enzymes, and SB 281, defective in mucocyst maturation. Immunoelectron microscopy and confocal laser scanning microscopy demonstrated that Tetrahymena HPPD primarily localized to membranes of the endoplasmic reticulum. In addition, Tetrahymena HPPD was detected in association with membranes of the Golgi apparatus, and transport vesicles in exponentially growing wild-type and mutant strains. In starved cells, Tetrahymena HPPD localized exclusively to membranes of small vesicles. Since no de novo synthesis of Tetrahymena HPPD takes place in cells starved for more than 30 min, these results suggest that there is a flow of Tetrahymena HPPD from the endoplasmic reticulum to small vesicles, possibly via the Golgi apparatus, and that Tetrahymena HPPD contains a signal for vesicle membrane retrieval or retention.  相似文献   

19.
The effect of chloroquine (CQ) on autophagy was studied in starved Tetrahymena pyriformis. When a proliferating Tetrahymena culture is transferred to a starvation medium, autophagy commences although cells most advanced in the cell cycle will divide. The drug was added to 1-h starved cells at different pH values because CQ affects pH dependently. The CQ concentration blocking all cell divisions was determined as the lowest toxic, but sublethal, concentration. Hence, the highest tolerated concentrations at pH 6.8, 7.1, and 7.7 were 1.0, 0.3, and 0.03 mM CQ, respectively. Lower CQ concentrations had a dose-dependent effect on cell increment and higher concentrations induced cell mortality. Rates of cell motility and decreases in cell volume were affected by the drug, while the capacity for endocytosis was unaffected in low concentrations but affected dose dependently in high concentrations. Light microscopically, all drug-treated cells contained small refractive bodies, but in toxic concentrations they also contained conspicuously large vacuoles. After 1 h and 4 h in CQ, fine structure analysis showed autophagosomes with electron-dense material in cells in tolerated concentrations and of enlarged size, but decreased number, in toxic concentrations. The contents of autophagosomes revealed cell organelles in different stages of disintegration. The conclusion is that the drug enhances autophagy in Tetrahymena in a pH-, dose-, and time-dependent manner.  相似文献   

20.
Phagocytosis of Tetrahymena is inhibited by prednisolone-sodium-succinate and deoxy-corticosterone-glucoside, and stimulated by dexamethasone and prednisolone. Dexamethasone and estradiol enter the cells and are localized first in food vacuoles, and later on in the cytosol. They were never found in the nucleus. The demonstration by biochemical methods of a specific glucocorticoid binding protein failed in all three subcellular fractions examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号