首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The microbial community of a groundwater system contaminated by 1,2-dichloroethane (1,2-DCA), a toxic and persistent chlorinated hydrocarbon, has been investigated for its response to biostimulation finalized to 1,2-DCA removal by reductive dehalogenation. The microbial population profile of samples from different wells in the aquifer and from microcosms enriched in the laboratory with different organic electron donors was analyzed by ARISA (Amplified Ribosomal Intergenic Spacer Analysis) and DGGE (Denaturing Gradient Gel Electrophoresis) of 16S rRNA genes. 1,2-DCA was completely removed with release of ethene from most of the microcosms supplemented with lactate, acetate plus formate, while cheese whey supported 1,2-DCA dehalogenation only after a lag period. Microbial species richness deduced from ARISA profiles of the microbial community before and after electron donor amendments indicated that the response of the community to biostimulation was heterogeneous and depended on the well from which groundwater was sampled. Sequencing of 16S rRNA genes separated by DGGE indicated the presence of bacteria previously associated with soils and groundwater polluted by halogenated hydrocarbons or present in consortia active in the removal of these compounds. A PCR assay specific for Desulfitobacterium sp. showed the enrichment of this genus in some of the microcosms. The dehalogenation potential of the microbial community was confirmed by the amplification of dehalogenase-related sequences from the most active microcosms. Cloning and sequencing of PCR products indicated the presence in the metagenome of the bacterial community of a new dehalogenase potentially involved in 1,2-DCA reductive dechlorination.  相似文献   

2.
Groundwater sampling is a critical step in subsurface microbial ecology. Here, we compared two different sampling methods: commonly used disposable bailers (unimproved sampler) and an improved sampler, the latter of which was devised to minimize exposure to the aerobic atmosphere. Microbial community analysis using the 16S rRNA and methyl coenzyme-M reductase (mcrA) genes in the lignite seam groundwater revealed that the archaeal communities in samples obtained by the improved sampler were dominated by hydrogenotrophic methanogen Methanobacterium. These results suggested that the improved sampler would be more favorable for obtaining methanogenic archaeal community than the unimproved one, and that the sampling method affected the microbial community analysis in the investigated subterranean lignite seams.  相似文献   

3.
王倩  胡欢  范芹  马锐  彭泽惠  刘建国 《微生物学通报》2019,46(11):3084-3090
种植体周围炎是发生在骨性结合种植体周围组织的炎症,是由微生物引发的感染性疾病,可引起种植体周围支持组织丧失而导致种植失败。阐明种植体周围炎生物膜的微生物学基础,可为制定相应防治策略提供理论依据。随着测序技术的发展,基于16S rRNA基因的测序分析技术逐渐应用于与口腔种植体相关的微生物学研究,使人们对种植体周围炎生物膜的微生物群落多样性有了更全面的了解,也进一步认识到种植体周围炎和牙周炎菌斑生物膜的微生物结构存在显著差别。本文根据基于16S rRN基因A序列分析技术的最新研究成果,对种植体周围炎菌斑生物膜的微生物学研究进展作一综述。  相似文献   

4.
To examine the relationship between plant species composition and microbial community diversity and structure, we carried out a molecular analysis of microbial community structure and diversity in two field experiments. In the first experiment, we examined bacterial community structure in bulk and rhizosphere soils in fields exposed to different plant diversity treatments, via a 16S rRNA gene clone library approach. Clear differences were observed between bacterial communities of the bulk soil and the rhizosphere, with the latter containing lower bacterial diversity. The second experiment focused on the influence of 12 different native grassland plant species on bacterial community size and structure in the rhizosphere, as well as the structure of Acidobacteria and Verrucomicrobia community structures. In general, bacterial and phylum-specific quantitative PCR and PCR-denaturing gradient gel electrophoresis revealed only weak influences of plant species on rhizosphere communities. Thus, although plants did exert an influence on microbial species composition and diversity, these interactions were not specific and selective enough to lead to major impacts of vegetation composition and plant species on below-ground microbial communities.  相似文献   

5.
Abstract

The study of microbial communities in river sediments contaminated by thallium (Tl) is necessary to achieve the information for in-situ microbially mediated bioremediation. However, little is known about the microbial community in Tl-contaminated river sediments. In the present study, we characterized the microbial community and their responses to Tl pollution in river sediments from the Tl-mineralized Lanmuchang area, Southwest Guizhou, China. Illumina sequencing of 16S rRNA amplicons revealed that over 40 phyla belong to the domain bacteria. In all samples, Proteobacteria, Cyanobacteria, and Actinobacteria were the most dominant phyla. Based on the UPGMA (Unweighted Pair Group Method with Arithmetic Mean) tree and PCoA (Principal Coordinates Analysis) analysis, microbial composition of each segment was distinct, indicating in-situ geochemical parameters (including Tl, sulfate, TOC, Eh, and pH) had influenced on the microbial communities. Moreover, canonical correspondence analysis (CCA) was employed to further elucidate the impact of geochemical parameters on the distribution of microbial communities in local river sediments. The results indicated that a number of microbial communities including Cyanobacteria, Spirochaete, Hydrogenophaga, and Acinetobacter were positively correlated with total Tl, suggesting potential roles of these microbes to Tl tolerance or to biogeochemical cycling of Tl. Our results suggested a reliable location for the microbial community’s diversity in the presence of high concentrations of Tl and might have a potential association for in-situ bioremediation strategies of Tl-contaminated river. Overall, in situ microbial community could provide a useful tool for monitoring and assessing geo-environmental stressors in Tl-polluted river sediments.  相似文献   

6.
Karstic cave systems in Slovenia receive substantial amounts of organic input from adjacent forest and freshwater systems. These caves host microbial communities that consist of distinct small colonies differing in colour and shape. Visible to the naked eye, the colonies cover cave walls and are strewn with light-reflecting water droplets. In this study, the diversity of prokaryotes constituting these unusual microbial communities in Pajsarjeva jama cave was examined. A molecular survey based on small subunit rRNA diversity showed a high diversity within the Bacteria , while members of Archaea were not recovered. A total of eight bacterial phyla were detected. The application of various species richness estimators confirmed the diverse nature of the microbial community sample. Members of Gammaproteobacteria were most abundant in the clone libraries constructed and were followed in abundance by members of Actinobacteria and Nitrospira . In addition, members of Alphaproteobacteria, Betaproteobacteria and Deltaproteobacteria as well as Acidobacteria, Verrucomicrobia, Planctomycetes, Chloroflexi and Gemmatimonadetes were identified in clone libraries. The high number of clones most closely related to environmental 16S rRNA gene clones showed the broad spectrum of unknown and yet to be cultivated microorganisms inhabiting these cave systems.  相似文献   

7.
8.
Ubiquitous microbial communities in river sediments actively govern organic matter decomposition, nutrient recycling, and remediation of toxic compounds. In this study, prokaryotic diversity in two major rivers in central Thailand, the Chao Phraya (CP) and the Tha Chin (TC) distributary was investigated. Significant differences in sediment physicochemical properties, particularly silt content, were noted between the two rivers. Tagged 16S rRNA sequencing on a 454 platform showed that the sediment microbiomes were dominated by Gammaproteobacteria and sulfur/sulfate reducing Deltaproteobacteria, represented by orders Desulfobacteriales and Desulfluromonadales together with organic degraders Betaproteobacteria (orders Burkholderiales and Rhodocyclales) together with the co-existence of Bacteroidetes predominated by Sphingobacteriales. Enrichment of specific bacterial orders was found in the clayey CP and silt-rich TC sediments, including various genera with known metabolic capability on decomposition of organic matter and xenobiotic compounds. The data represent one of the pioneered works revealing heterogeneity of bacteria in river sediments in the tropics.  相似文献   

9.
The undisturbed sediment of Lake Hovsgol (Mongolia) is scientifically important because it represents a record of the environmental changes that took place between the Holocene (the present age) and Pleistocene (the last ice age; 12,000 14C years before present day). Here, we investigated how the current microbial communities change as the depth increases by PCR-denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA genes of the microbial communities. The microbial diversity, as estimated by the Shannon index, decreased as the depth increased. In particular, significant changes in archaeal diversity were observed in the middle depth (at 39-42 cm depth of total 60 cm depth) that marks the border between the Holocene and Pleistocene. Phylotype belonging to Beta-and Gamma-Proteobacteria were the predominant bacteria and most of these persisted throughout the depth examined. However, as the depth increased, some bacteria (some genera belonging to Beta-Proteobacteria, Nitrospira, and OP8-9) were not detectable while others (some genera belonging to Alpha-, Beta-, Gamma-Proteobacteria) newly detected by DGGE. Crenarchaea were the predominant archaea and only one phylotype belonging to Euryarchaea was found. Both the archaeal and bacterial profiles revealed by the DGGE band patterns could be grouped into four and three subsets, respectively, subsets that were largely divided by the border between the Holocene and Pleistocene. Thus, the diversity of the current microbial communities in Lake Hovsgol sediments decreases with increasing depth. These changes probably relate to the environmental conditions in the sediments, which were shaped by the paleoclimatic events taking place between the Holocene and Pleistocene.  相似文献   

10.
AIMS: The aim of this study was to apply a group specific PCR system followed by denaturing gradient gel electrophoresis (DGGE) analysis to evaluate the effect of oil contamination and the biostimulation process on the diversity of Pseudomonas populations in soil ecosystems. METHODS AND RESULTS: Direct DNA extraction from biostimulated- and oil-contaminated soil samples was performed. Primers specific for the genus Pseudomonas spp. were used to amplify 16S rRNA genes and then a semi-nested PCR reaction was applied to obtain smaller fragments for comparing the PCR products by DGGE. Whether in bulk, oil-contaminated or biostimulated soils, the DGGE profiles revealed little change in Pseudomonas community throughout the 270 days of experiment. The presence of a few additional bands observed only in treated samples indicated that a bacterial shift occurred with the addition of nutrients and with oil contamination. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: The combination of semi-nested PCR and DGGE was found to be a rapid and sensitive technique to study the diversity within the genus Pseudomonas and may be suitable for further studies concerning the role of this bacterial group in large-scale oil-contaminated areas.  相似文献   

11.
12.
[目的]通过比较分析油藏样品的微生物群落结构特点,认识油藏微生物的生态功能.[方法]利用3种油藏微生物研究中常用的富集培养方法,对胜利油田单12区块S12-4油井产出水样品进行了选择性富集培养,运用构建16S rRNA基因文库的方法分析了富集样品和非培养样品的细菌多样性.[结果]通过16S rRNA基因序列比对发现,非培养样品、异养菌富集样品、烃降解菌富集样品和硫酸盐还原菌富集样品中的优势菌分别为Pseudomonas属,Thermotoga属,Thermaerobacter属和Thermotoga属的成员.多样性分析结果表明,非培养样品的微生物多样性最丰富,同时非培养样品和富集样品的微生物群落结构存在很大的差异,富集样品中的微生物包括优势菌在油藏原位环境中含量很低.[结论]细菌组成差异的比较结果,对油藏微生物的生态功能研究和微生物驱油潜力评估具有重要意义.  相似文献   

13.
Although numerous studies have investigated changes in soil microbial communities across space, questions about the temporal variability in these communities and how this variability compares across soils have received far less attention. We collected soils on a monthly basis (May to November) from replicated plots representing three land-use types (conventional and reduced-input row crop agricultural plots and early successional grasslands) maintained at a research site in Michigan, USA. Using barcoded pyrosequencing of the 16S rRNA gene, we found that the agricultural and early successional land uses harbored unique soil bacterial communities that exhibited distinct temporal patterns. α-Diversity, the numbers of taxa or lineages, was significantly influenced by the sampling month with the temporal variability in α-diversity exceeding the variability between land-use types. In contrast, differences in community composition across land-use types were reasonably constant across the 7-month period, suggesting that the time of sampling is less important when assessing β-diversity patterns. Communities in the agricultural soils were most variable over time and the changes were significantly correlated with soil moisture and temperature. Temporal shifts in bacterial community composition within the successional grassland plots were less predictable and are likely a product of complex interactions between the soil environment and the more diverse plant community. Temporal variability needs to be carefully assessed when comparing microbial diversity across soil types and the temporal patterns in microbial community structure can not necessarily be generalized across land uses, even if those soils are exposed to the same climatic conditions.  相似文献   

14.
Bacterial endophytes may be important for plant health and other ecologically relevant functions of poplar trees. The composition of endophytic bacteria colonizing the aerial parts of poplar was studied using a multiphasic approach. The terminal restriction fragment length polymorphism analysis of 16S rRNA genes demonstrated the impact of different hybrid poplar clones on the endophytic community structure. Detailed analysis of endophytic bacteria using cultivation methods in combination with cloning of 16S rRNA genes amplified from plant tissue revealed a high phylogenetic diversity of endophytic bacteria with a total of 53 taxa at the genus level that included Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. The community structure displayed clear differences in terms of the presence and relative proportions of bacterial taxa between the four poplar clones studied. The results showed that the genetic background of the hybrid poplar clones corresponded well with the endophytic community structure. Out of the 513 isolates and 209 clones identified, Actinobacteria, in particular the family Microbacteriaceae, made up the largest fraction of the isolates, whereas the clone library was dominated by Alpha- and Betaproteobacteria. The most abundant genera among the isolates were Pseudomonas and Curtobacterium, while Sphingomonas prevailed among the clones.  相似文献   

15.
【背景】现代规模化生产模式下,牛舍环境管理是影响奶牛高效健康生产的重要因素。【目的】探讨牛场不同牛舍土壤细菌群落特征,为奶牛健康生产提供理论依据。【方法】采集宁夏某规模化奶牛场的哺乳犊牛岛、断奶犊牛舍、育成牛舍、低产泌乳牛舍、高产头胎泌乳牛舍、高产经产泌乳牛舍、干奶牛舍和病牛舍这8个不同牛舍的土样,每个牛舍6个重复,共48份土样。利用16S rRNA基因扩增子测序分析细菌群落结构与多样性,并对细菌群落的功能进行预测。【结果】不同牛舍土样细菌群落组成存在差异,并且8个牛舍中高产头胎泌乳牛舍土样的细菌群落多样性最高。哺乳犊牛岛土壤与其他牛舍土壤细菌群落在门水平上差异较大;泌乳期牛舍土样之间的细菌群落结构相似度较高。在门的水平上,拟杆菌门(Bacteroidetes)、变形菌门(Proteobacteria)、放线菌门(Actinobacteria)和厚壁菌门(Firmicutes)是这8个牛舍土样共有的优势菌门。在属的水平上,嗜盐碱的盐单胞菌属(Halomonas)、具有潜在降解特性的Fermentimonas和栖海面菌属(Aequorivita)及致病菌的鸟杆菌属(Ornithobacterium)是犊牛期牛舍土样的优势菌属;嗜盐碱的Truepera是育成牛舍土样的优势菌属;致病菌的不动杆菌属(Acinetobacter)和Parapedobacter、耐药菌的Pedobacter是泌乳期牛舍土样的优势菌属。【结论】致病菌和参与硝酸盐呼吸的细菌主要分布在哺乳犊牛岛,嗜盐碱菌主要分布在断奶犊牛舍和育成牛舍,产甲烷的细菌主要分布在高产头胎泌乳牛舍。本研究分析了不同牛舍土壤细菌群落多样性,为奶牛健康生产提供理论依据。  相似文献   

16.
Changes in bacterial diversity during the field experiment on biostimulation were monitored by denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rDNA fragments. The results revealed that the bacterial community was disturbed after the start of treatment, continued to change for 45 days or 60 days and then formed a relatively stable community different from the original community structure. DGGE analysis of soluble methane monooxygenase (sMMO) hydroxylase gene fragments, mmoX, was performed to monitor the shifts in the numerically dominant sMMO-containing methanotrophs during the field experiment. Sequence analysis on the mmoX gene fragments from the DGGE bands implied that the biostimulation treatment caused a shift of potential dominant sMMO-containing methanotrophs from type I methanotrophs to type II methanotrophs.  相似文献   

17.
18.
In order to investigate the bacterial diversity in a number of rivers, reservoirs and lakes in northern and central Portugal during the winter of 2004/5 (atypically dry), we applied molecular methodologies, namely denaturing gradient gel electrophoresis with primers targeting fractions of the bacterial 16S rRNA gene. Environmental parameters such as pH, conductivity, inorganic nutrients, total suspended solids and chlorophyll a were determined in order to characterize the trophic status of the studied water bodies. We found water bodies with oligotrophic to hypereutrophic characteristics. Organisms belonging to the Bacteroidetes and Alphaproteobacteria were found at the highest pH environment. Bacteroidetes were also related to high nutrient concentrations. Verrucomicrobia were associated with the most oligotrophic reservoir and low pH values. Actinobacteria were present in all samples from lakes and reservoirs, indicating its preference for lentic water bodies. Cyanobacteria dominance was related to high pH and conductivity levels. In general the conductivity values recorded in winter 2005 were the highest over recent years and chlorophyll a also reached very high levels. The data emphasize an enhanced risk of eutrophication for the studied water bodies, especially in the subsequent months when the temperature rises.  相似文献   

19.
20.
In the present study, benthic microbial communities along the Pearl Estuary, a typical subtropical estuary in China subjected to extensive anthropogenic disturbance, were investigated using 16S rRNA gene-based pyrosequencing. The results showed that microbial communities in freshwater samples were clearly distinct from those in saltwater samples, since the relative sequence abundances of Deltaproteobacteria, Thermoplasmata and Marine Group I (MG-I) were higher in saltwater sediments, whereas Chloroflexi, Spirochaetes, Betaproteobacteria and methanogens were more prevalent in freshwater sediments. In addition, bacterial communities showed vertical stratifications in saltwater sediments, but remained constant with depth in freshwater sediments. The total organic carbon and carbon/nitrogen ratio in sediments correlated significantly with the overall community variations. The predominance of various microorganisms in specific niches led to efforts to identify their functional couplings by exploring their co-occurrence patterns. Using network analysis, strong positive correlations were observed between sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria, and between SRB and nitrite-oxidizing bacteria, indicating the potential interactions of intra-sulfur cycle processes, as well as sulfur and nitrogen cycles, in coastal sediments. Archaeal clades revealed strong and wide correlations between the Miscellaneous Crenarchaeotal Group (MCG) and other groups, suggesting a central role of MCG in the coastal benthic environment. Inversely, MG-I displayed negative correlations with other clades, which might indicate that the lifestyles of heterotrophic and autotrophic clades were mutually exclusive. This study presented a detailed outline of the biogeographic patterns of benthic microbial communities along the Pearl Estuary and provided new information regarding the potential interactions of various biogeochemical cycles in coastal sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号