首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of 400 R X-irradiation on the localization and the number of mature and immature goblet cells and Paneth cells in rat duodenal epithelium has been studied. At short times after irradiation, when the total proliferative activity in the crypts of Lieberkuhn is reduced, the proportion of mature and immature goblet cells of the total number of crypt cells was increased; also an absolute increase in the number of goblet cells in the crypts was found. The immature goblet cells were localized in the lower half of the crypt as in control animals, whereas the number of the mature cells increased over the whole crypt length. When the proliferative activity of the crypt cells increases again from 12 to 48 hr after irradiation the number of both types of goblet cells decreases. Between 48 and 72 hr, when the whole crypt is involved in proliferation, a second increase of both types of goblet cells was found. However, the localization of the immature goblet cells is no longer restricted to the lower half of the crypt but they also appear at the higher cell positions. On the villus no immature goblet cells were found and the changes in the numbers of mature goblet cells do reflect the changes induced by irradiation in the goblet cell population in the crypt. The absolute number and localization of Paneth cells did not change under the experimental conditions. The findings are discussed in relation to cell proliferation and differentiation processes in intestinal crypts.  相似文献   

2.
The influence of 400 R X-irradiation on the localization and the number of mature and immature goblet cells and Paneth cells in rat duodenal epithelium has been studied. At short times after irradiation, when the total proliferative activity in the crypts of Lieberkiihn is reduced, the proportion of mature and immature goblet cells of the total number of crypt cells was increased; also an absolute increase in the number of goblet cells in the crypts was found. The immature goblet cells were localized in the lower half of the crypt as in control animals, whereas the number of the mature cells increased over the whole crypt length. When the proliferative activity of the crypt cells increases again from 12 to 48 hr after irradiation the number of both types of goblet cells decreases. Between 48 and 72 hr, when the whole crypt is involved in proliferation, a second increase of both types of goblet cells was found. However, the localization of the immature goblet cells is no longer restricted to the lower half of the crypt but they also appear at the higher cell positions. On the villus no immature goblet cells were found and the changes in the numbers of mature goblet cells do reflect the changes induced by irradiation in the goblet cell population in the crypt. The absolute number and localization of Paneth cells did not change under the experimental conditions. The findings are discussed in relation to cell proliferation and differentiation processes in intestinal crypts.  相似文献   

3.
Single and repeated injections of 3H-thymidine were used to demonstrate that both Paneth and goblet cells in the small intestine of the rat undergo renewal but do not themselves proliferate. Goblet cells are renewed much faster than Paneth cells and probably migrate with the columnar cells from the crypts to the villi. Attempts were made to identify the proliferative precursors.  相似文献   

4.
Small intestinal crypt epithelium obtained from normal fasting humans by peroral biopsy of the mucosa was studied with the electron microscope. Paneth cells were identified at the base of the crypts by their elaborate highly organized endoplasmic reticulum, large secretory granules, and small lysosome-like dense bodies within the cytoplasm. Undifferentiated cells were characterized by smaller cytoplasmic membrane-bounded granules which were presumed to be secretory in nature, a less elaborate endoplasmic reticulum, many unattached ribosomes and, in some cells, the presence of glycogen. Some undifferentiated cells at the base of the crypts contained lobulated nuclei and striking paranuclear accumulations of mitochondria. Membrane-bounded cytoplasmic fragments, probably originating from undifferentiated and Paneth cells, were frequently apparent within crypt lumina. Of the goblet cells, some were seen actively secreting mucus. In these, apical mucus appeared to exude into the crypt lumen between gaps in the microvilli. The membrane formerly surrounding the apical mucus appeared to fuse with and become part of the plasma membrane of the cell, suggesting a merocrine secretory mechanism. Enterochromaffin cells were identified by their location between the basal regions of other crypt cells and by their unique intracytoplasmic granules.  相似文献   

5.
Proteins of the basolateral membrane (BLM) of small intestine epithelial cells of adult rats, in the MW ranges of 50-65 KD, 85-100 KD, and over 100 KD, were obtained as follows. After isolation of the BLM and subsequent SDS-PAGE and transblotting of the proteins on nitrocellulose sheets, the bands in these MW ranges were cut out of the nitrocellulose sheet and extracted. Balb/C mice were immunized with these protein fractions and a monoclonal antibody (MAb) was then produced. MAb SI/CC1 obtained via immunization with the 50-65 KD protein fraction shows specificity for the crypt epithelium of the small intestine. It can be used to characterize, by light and electron microscopic immunohistochemical methods, a crypt cell protein (SI/CC1-Ag) with a very specific localization. Fluorescence labeling shows that the SI/CC1-Ag can be found only in the epithelium of small intestine crypts (except for the granules in eosinophilic granulocytes). The epithelium of the colon, as well as the epithelia of other organs, could not be labeled. In the small intestine crypts, SI/CC1-Ag is found only in the Paneth cells located in the basal crypt section, and in the undifferentiated cells in the middle crypt section; it is lacking in the cells of the upper crypt section. Gold labeling shows that SI/CC1-Ag in the undifferentiated cells is localized exclusively in the basolateral PM domain. On the Paneth cells, the content of the secretory granules is labeled, along with the basolateral PM domain; the labeling sometimes present on their luminal part is probably due to passively absorbed secretion from these cells. The SI/CC1-Ag in the BLM of undifferentiated and Paneth cells is found only on Days 21-23 post partum, whereas the Paneth cell granules could be labeled as early as the Day 16 post partum. With immunodetection with SI/CC1, one band at about 55 KD is specifically labeled in the protein pattern of the isolated small intestine cell BLM. In the protein pattern of the isolated crypt cells two bands were labeled, again one at 55 KD and one at about 120 KD. These findings indicate that SI/CC1-Ag is a 55 KD protein that appears on Days 21-23 post partum in the BLM of undifferentiated cells and of Paneth cells.  相似文献   

6.
The effect of protein-free and starvation diets on the migration of cells from the crypts onto and up the villi of the rat ileum was studied. Rats starved for 3, 7, or 10 days or fed a protein-free diet (PFD) for 3, 7, or 11 wk were injected with thymidine-3H and sacrificed at timed intervals. The time required for the labeled cells to first appear on the villi of experimental animals was longer than in the controls. This was the result of an elongated cycle in the protein-depleted animals and a lengthening of the maturation period in both the starved and protein-depleted animals. Determination of the distance which labeled cells had migrated up the villi in control and experimental animals, after thymidine-3H injection, indicated that cells in animals starved for 7 days migrated more rapidly than those in the fed controls, while those of 10-day starved animals moved more slowly. The cells of animals fed PFD for 3 wk migrated up the villi more rapidly, those of animals depleted for 7 wk migrated at the same time rate, and those of 11-wk PFD animals migrated more slowly than the fed controls. There is apparently no correlation between the cell cycle time in the crypt cells and the rate of migration of cells up the villus.  相似文献   

7.
Significant differences in the uptake of thymidine-3H, percentage of labeled cells, numbers of grains per labeled nucleus, and mitotic rate were noted in rat corneal epithelium along a 24-hr time scale. These were demonstrated by injecting subgroups of five animals every hour during a 24-hr period with thymidine-3H, sacrificing them 2 hr later, and analyzing the corneal epithelium by scintillation counter and radioautographic techniques. The increase in uptake during specific periods of the 24-hr time scale is attributed to an acceleration in the rate of DNA synthesis by individual cells and to an increase in the percentage of cells in the population actively synthesizing DNA.  相似文献   

8.
Summary The duodenal and colonic epithelia in mice were observed with electron microscopic autoradiography 2, 5 and 24 hours after a single injection of 3H-thymidine. After 2 hours, in the duodenum, silver grains are found in many undifferentiated cells, in a few young goblet cells, in some crystal-containing cells, and in some lymphocytes. In the colon after 2 hours silver grains are seen in some undifferentiated cells, and in many young goblet cells. Undifferentiated cells are characterized by a few short microvilli, poorly developed rough-surfaced endoplasmic reticulum, abundant free ribosomes, and a few apical moderately dense granules. In normal animals, absorptive cells seem to arise from undifferentiated cells, and goblet cells — from younger goblet cells. Undifferentiated cells could also become young goblet cells. Crystal-containing cells, which may not be of epithelial origin, proliferate in the epithelium in the adult animal.  相似文献   

9.
Walker ascites tumor cells and an extract derived from such cells (tumor angiogenesis factor, TAF) were injected into the subcutaneous tissue of rats by using a dorsal air sac technique. At intervals thereafter, thymidine-3H was injected into the air sac and the tissues were examined by autoradiography and electron microscopy. Autoradiographs of 1µ thick Epon sections showed thymidine-3H labeling in endothelial cells of small vessels 1–3 mm from the site of implantation, as early as 6–8 hr after exposure to live tumor cells At this time interval endothelial cells appeared histologically normal. DNA synthesis by endothelium subsequently increased and within 48 hr new blood vessel formation was detected. The presence of thymidine-3H-labeled endothelial nuclei, endothelial mitoses, and regenerating-type endothelium was confirmed by electron microscopy. TAF also induced neovascularization and endothelial cell DNA synthesis after 48 hr. A similar response was not evoked in saline controls. Formic acid, which elicited a more intense inflammatory response, was associated with less endothelial labeling and neovascularization at the times studied. Pericytes and other connective tissue cells were also stimulated by live tumor cells and TAF. The mechanism of new blood vessel formation induced by tumors is still unknown but our findings argue against cytoplasmic contact or nonspecific inflammation as prerequisites for tumor angiogenesis.  相似文献   

10.
Duodenal crypt cell kinetics in C3H mice have been studied before and after the injection of a single dose (3 mg/g body weight) of hydroxyurea (HU). This was done by autoradiographic analysis of crypt cells which had been labeled with tritiated 5-iodo-2'-deoxyuridine. This dose of HU kills the cells which are synthesizing DNA at the time of injection, inhibits DNA synthesis completely for 4–5 hr, and causes a partial synchronization of the cells when they recover from the inhibitory effects of HU. Duodenal crypt recovery is manifested by a decrease in the mean cell cycle time, an increase in the proliferating fraction, and a lengthening of the crypts. The acute cellular responses are apparently complete within 24–48 hr, but the length of the crypt has not returned to normal by 48 hr after HU administration.  相似文献   

11.
Some features of the proliferative cells at the bottom of the ileal crypts in BDF1 mice have been studied in relation to the distribution of Paneth cells (PC) in an attempt to clarify the nature and function of these crypt base columnar cells (BCC) and to elucidate some aspects of the role of the microenvironment created by the PC. Longitudinal sections of crypts have shown that the ratio of PC to the BCC, which are scattered amongst the PC, is 2.7:1 in sections or approximately 29 PC and 9 BCC per whole crypt, i.e., a ratio of 3.2:1. The labelling index of BCC is about 35%, which is comparable to that of mid-crypt columnar cells. Although the BCC do become labeled, it is concluded that they cannot create vertical pairs or runs of several adjacent BCC since this would seriously disturb the distribution of Paneth cells. Only in dividing crypts are such runs (consisting of 3 to 5 cells) observed. The ability of BCC to synthesize DNA is not dependent on their position in the Paneth cell zone. In 95% of the crypts, the highest Paneth cell is below the 7th cell position from the bottom of the crypt, and the positions of the highest PC on either side of a given crypt are similar. The secreted granules or the cytoplasm of PC specifically bind pokeweed lectin, and this can be used for identification. Tracer doses of 3HTdR (37 kBq/gm body weight) result in the histological death of some BCC, and these damaged cells are evenly distributed throughout the Paneth cell zone. These tracer doses are somewhat selectively incorporated into BCC, i.e., the BCC have a higher grain count in autoradiographs, probably because they possess more thymidine kinase enzyme activity. This ability is very sensitive to the withdrawal of food, because 24 hr of fasting abolished the observed gradient in the intensity of labelling, which is very well correlated with the distribution of BCC. Regeneration of the crypts following cytotoxic exposure to Ara-C is initiated at the base of the crypt and hence may involve the BCC with possible help from the Paneth cells. The latter are insensitive to cytotoxic (S phase specific) agents and may help in the regeneration by preserving the architecture of the base of the crypt.  相似文献   

12.
Following massive small bowel resection (SBR) in mice, there are sustained increases in crypt depth and villus height, resulting in enhanced mucosal surface area. The early mechanisms responsible for resetting and sustaining this increase are presently not understood. We hypothesized that expansion of secretory lineages is an early and sustained component of the adaptive response. This was assessed in the ileum by quantitative morphometry at 12 h, 36 h, 7 days, and 28 days and by quantitative RT-PCR of marker mRNAs for proliferation and differentiated goblet, Paneth cell, and enterocyte genes at 12 h after 50% SBR or sham operation. As predicted, SBR elicited increases of both crypt and villus epithelial cells, which were sustained though the 28 days of the experiment. Significant increases in the overall number and percentage of both Paneth and goblet cells within intestinal epithelium occurred by 12 h and were sustained up to 28 days after SBR. The increases of goblet cells after SBR were initially observed within villi at 12 h, with marked increases occurring in crypts at 36 h and 7 days. Consistent with this finding, qRT-PCR demonstrated significant increases in the expression of mRNAs associated with proliferation (c-myc) and differentiated goblet cells (Tff3, Muc2) and Paneth cells (lysozyme), whereas mRNA associated with differentiated enterocytes (sucrase-isomaltase) remained unchanged. From these data, we speculate that early expansion of intestinal secretory lineages within the epithelium of the ileum occurs following SBR, possibly serving to amplify the signal responsible for initiating and sustaining intestinal adaptation.  相似文献   

13.
The continuous feeding of the carcinogenic aminoazo dye DAB to rats produces hyperbasophilic foci in the preneoplastic livers. After injections of thymidine-3H into the rats, such foci were isolated from the livers and studied by radioautography with the phase-contrast and electron microscopes. In these foci, the only cells found to be proliferating, as determined by the uptake of thymidine-3H into their nuclei, were a poorly differentiated type; well differentiated hepatocytes in the same regions were not labeled with the isotope. The labeled cells had an irregular cell outline and a high nucleocytoplasmic ratio; the cytoplasm had almost completely lost the specialized elements characteristic of hepatocytes; the irregular nuclei with prominent nucleoli, the altered mitochondria, and the increased free ribosomes noted in these cells are features which are characteristic of neoplastic cells induced by DAB. Thus, it seems likely that the hyperbasophilic foci represent the sites of extensive dedifferentiation of hepatocytes followed by rapid cellular proliferation, leading to neoplastic growth.  相似文献   

14.
Summary Paneth cells located at the bottom of intestinal crypts may play a role in controlling the bacterial milieu of the intestine. Using morphometry to clarify the secretory mechanism of the Paneth cells, we studied the ultrastructural changes in mouse Paneth cells produced following intra-arterial perfusion with Hanks' balanced salt solution containing a cholinergic muscarinic secretagogue (bethanechol), a neuroblocking agent (tetrodotoxin), or a G-protein activator (NAF/AlCl3). Bethanechol (2×10-4 mol/l) induced Paneth-cell secretion. Many Paneth cells massively exocytosed their secretory material into the crypt lumen; the enhanced secretion caused degranulation and vacuole formation. However, tetrodotoxin (2×10-6 mol/l) did not prevent the bethanechol-enhanced secretion by the Paneth cells. NaF (1×10-2 mol/l) and AlCl3 (1×10-5 mol/l) induced massive exocytosis of the Paneth cells; the exocytotic figures were similar to those observed in mice stimulated by bethanechol. G-protein activation was followed by a sequence of intracellular events, resulting in exocytosis.  相似文献   

15.
In the small intestine, the progeny of stem cells migrate in precise patterns. Absorptive, enteroendocrine, and goblet cells migrate toward the villus while Paneth cells occupy the bottom of the crypts. We show here that beta-catenin and TCF inversely control the expression of the EphB2/EphB3 receptors and their ligand ephrin-B1 in colorectal cancer and along the crypt-villus axis. Disruption of EphB2 and EphB3 genes reveals that their gene products restrict cell intermingling and allocate cell populations within the intestinal epithelium. In EphB2/EphB3 null mice, the proliferative and differentiated populations intermingle. In adult EphB3(-/-) mice, Paneth cells do not follow their downward migratory path, but scatter along crypt and villus. We conclude that in the intestinal epithelium beta-catenin and TCF couple proliferation and differentiation to the sorting of cell populations through the EphB/ephrin-B system.  相似文献   

16.
DNA synthesis, mitosis and fusion of myocardial cells   总被引:1,自引:0,他引:1  
Myocardial cells obtained from embryonic chick ventricles have been used to investigate (1) whether differentiated cells can undergo DNA synthesis and mitosis and, (2) whether heart cells when grown in culture can fuse with each other and with chick skeletal myoblasts to form heterokaryon myotubes. Electron microscopic observations have shown that myocardial cells of day 3 and day 20 chick embryos did contain myofibrils with defined sarcomeres; these cells have been observed in mitosis. Cells obtained by tryptic digestion of day 12 chick ventricles when grown in culture continued to replicate their DNA as shown by thymidine-3H radioautography with DNase controls and were observed in all stages of mitosis. Electron microscopy showed that myofibrils were present in some of the cultured cells. Bi-, tri- and tetranucleate cells were observed in the cultures. Thymidine-3H radioautography showed that these cells were formed by karyokinesis without cytokinesis and by the fusion of uninucleate cells. Since the heart cells could fuse with each other, we tested the possibility that they could fuse with skeletal myoblasts to form heterokaryon myotubes. This was accomplished by co-culturing thymidine-3H labeled ventricular cells and unlabeled skeletal myoblasts. Radioautography with DNase controls showed that some of the myotubes consisted of unlabeled skeletal muscle nuclei and labeled heart nuclei in varied proportions. The factors initiating the formation of these heterokaryons have not been elucidated.  相似文献   

17.
Tradescantia pollen grains, isolated during the period of DNA synthesis in the generative cell, accumulate deoxythymidine triphosphate (dTTP)-3H after incubation with thymidine-3H in the presence of millimolar deoxyadenosine. Most of this dTTP-3H was found to resist extraction by the fixative, cold ethanol-acetic acid, and its location was investigated by radioautography with thin, dry emulsion. Substantial binding of dTTP-3H occurred as an artifact; but when nuclei were isolated from the fixed pollen grains by sonication, it was found that they were differentially labeled: generative nuclei contained dTTP-3H, vegetative nuclei did not. This observation is discussed and is interpreted as evidence supporting the idea that thymidine is phosphorylated only in the generative cell of the pollen grain.  相似文献   

18.
Paneth cells are one of the histologic components of intestinal metaplasia of the stomach, as are mucin-producing goblet cells. With the aid of an image quantifier, the distribution of Paneth cells histochemically labeled with acid fuchsin was analyzed for a gastrectomy specimen containing an adenocarcinoma of the intestinal type; the topographic distribution of goblet cells histochemically labeled with Alcian blue (pH 2.5) was also analyzed. The specimen was cut into 63 blocks (0.5 X 4.0 cm) in four zones; antrum (zone I), intermediate region (zone II) and fundus (zones III and IV). Paneth cells were found only in sections containing mucin-producing goblet cells. Paneth cells were found in 12.5% of the 16 sections from the antral zone I containing Alcian blue-positive goblet cells. The rates were 44.4% for the intermediate zone II and 55.5% for the distal fundic zone III. The total area occupied by Paneth cells was significantly lower in the gastric mucosa as compared to the duodenal mucosa. The "Paneth cell index" (total Paneth cell area/total goblet cell area) was highest in the duodenum, followed by the distal fundic zone III. This method of quantitating Paneth cell metaplasia of the stomach will be used to investigate the topographic distribution of those cells in populations with low and high incidences of intestinal metaplasia.  相似文献   

19.
Physiological studies of intact crypt epithelium have been limited by problems of accessibility in vivo and dedifferentiation in standard primary culture. Investigations of murine intestinal stem cells have recently yielded a primary intestinal culture in three-dimensional gel suspension that recapitulates crypt structure and epithelial differentiation (Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, Van Es JH, Abo A, Kujala P, Peters PJ, Clevers H. Nature 459: 262-265, 2009). We investigated the utility of murine intestinal crypt cultures (termed "enteroids") for physiological studies of crypt epithelium by focusing on the transport activity of the cystic fibrosis transmembrane conductance regulator Cftr. Enteroids had multiple crypts with well-differentiated goblet and Paneth cells that degranulated on exposure to the muscarinic agonist carbachol. Modified growth medium provided a crypt proliferation rate, as measured by 5-ethynyl-2'-deoxyuridine labeling, which was similar to proliferation in vivo. Immunoblots demonstrated equivalent Cftr expression in comparisons of freshly isolated crypts with primary and passage 1 enteroids. Apparent enteroid differences in mRNA expression of other transporters were primarily associated with villous epithelial contamination of freshly isolated crypts. Microelectrode analysis revealed cAMP-stimulated membrane depolarization in enteroid epithelium from wild-type (WT) but not Cftr knockout (KO) mice. Morphological and microfluorimetric studies, respectively, demonstrated Cftr-dependent cell shrinkage and lower intracellular pH in WT enteroid epithelium in contrast to Cftr KO epithelium or WT epithelium treated with Cftr inhibitor 172. We conclude that crypt epithelium of murine enteroids exhibit Cftr expression and activity that recapitulates crypt epithelium in vivo. Enteroids provide a primary culture model that is suitable for physiological studies of regenerating crypt epithelium.  相似文献   

20.
The incorporations of uridine-3H, thymidine-3H, and leucine-3H were studied in the process-forming regions of the anal-fin rays of the ethisterone-treated females of Oryzias latipes. The activity of alkaline phosphatase was also studied. The increased incorporation of uridine-3H was detected between 12 and 24 hours of ethisterone treatment, attaining the maximum at 24 hours. The percentage of thymidine-3H labeled nuclei increased rapidly between 48 and 84 hours. The incorporation of leucine-3H was found to increase during the first 12 hours, attaining a constant level at 24 hours. An additional increase in incorporation of leucine-3H took place at 60 hours, the incorporation coming up to the maximum at 72 hours. In the horny substance secreted by the scleroblast mass, grains in the autoradiograph were detected at and after 72 hours. Alkaline phosphatase activity was manifested between 48 and 72 hours. These results seem to correspond to the histological changes, such as the appearance of the precursor cells of scleroblasts at 48 hours, the formation of scleroblast mass during the next 24 hours, and the initiation of horny substance secretion at 72 hours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号