首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tools to study disordered systems with local structural order, such as proteins in solution, remain limited. Such understanding is essential for e.g. rational drug design. Correlated X-ray scattering (CXS) has recently attracted new interest as a way to leverage next-generation light sources to study such disordered matter. The CXS experiment measures angular correlations of the intensity caused by the scattering of X-rays from an ensemble of identical particles, with disordered orientation and position. Averaging over 15 496 snapshot images obtained by exposing a sample of silver nanoparticles in solution to a micro-focused synchrotron radiation beam, we report on experimental efforts to obtain CXS signal from an ensemble in three dimensions. A correlation function was measured at wide angles corresponding to atomic resolution that matches theoretical predictions. These preliminary results suggest that other CXS experiments on disordered ensembles—such as proteins in solution—may be feasible in the future.  相似文献   

2.
High resolution 2H nuclear magnetic resonance (NMR) was used to investigate the interaction of D2O with solid samples of uniaxially oriented Li-DNA (B-form DNA) and Na-DNA (A- and B-form DNA). At low levels of hydration, 0 approximately 4 D2O/nucleotide, the 2H spectra shows a very weak (due to short T2) broad single resonance, suggestive of unrestricted rotational diffusion of the water. At approximately 5 or more D2O/nucleotide, the Li-DNA (B-form) spectra suddenly exhibit a large doublet splitting, characteristic of partially ordered water. With increasing hydration, the general trend is a decrease of this splitting. From our analysis we show that the DNA water structure reorganizes as the DNA is progressively hydrated. The D2O interaction with Na-DNA is rather different than with Li-DNA. Below 10 D2O/nucleotide Na-DNA is normally expected to be in the A-form, and a small, or negligible splitting is observed. In the range 9-19 D2O/nucleotide, the splitting increases with increasing hydration. Above approximately 20 D2O/nucleotide Na-DNA converts entirely to the B-form and the D2O splittings are then similar to those found in Li-DNA. We show that the complex Na-DNA results obtained in the range 0-20 D2O/nucleotide are caused by a mixture of A- and B-DNA in those samples.  相似文献   

3.
Norwalk virus (NV), a member of the Caliciviridae family, is the major cause of acute, epidemic, viral gastroenteritis. The NV genome is a positive sense, single-stranded RNA that encodes three open reading frames (ORFs). The first ORF produces a polyprotein that is processed by the viral cysteine protease into six nonstructural proteins. We have determined the structure of the NV protease to 1.5 and 2.2 A from crystals grown in the absence or presence, respectively, of the protease inhibitor AEBSF [4-(2-aminoethyl)-benzenesulfonyl fluoride]. The protease, which crystallizes as a stable dimer, exhibits a two-domain structure similar to those of other viral cysteine proteases with a catalytic triad composed of His 30, Glu 54, and Cys 139. The native structure of the protease reveals strong hydrogen bond interactions between His 30 and Glu 54, in the favorable syn configuration, indicating a role of Glu 54 during proteolysis. Mutation of this residue to Ala abolished the protease activity, in a fluorogenic peptide substrate assay, further substantiating the role of Glu 54 during proteolysis. These observations contrast with the suggestion, from a previous study of another norovirus protease, that this residue may not have a prominent role in proteolysis (K. Nakamura, Y. Someya, T. Kumasaka, G. Ueno, M. Yamamoto, T. Sato, N. Takeda, T. Miyamura, and N. Tanaka, J. Virol. 79:13685-13693, 2005). In the structure from crystals grown in the presence of AEBSF, Glu 54 undergoes a conformational change leading to disruption of the hydrogen bond interactions with His 30. Since AEBSF was not apparent in the electron density map, it is possible that these conformational changes are due to subtle changes in pH caused by its addition during crystallization.  相似文献   

4.
The structure of turnip crinkle virus has been determined at 3.2 A resolution, using the electron density of tomato bushy stunt virus as a starting point for phase refinement by non-crystallographic symmetry. The structures are very closely related, especially in the subunit arm and S domain, where only small insertions and deletions and small co-ordinate shifts relate one chain to another. The P domains, although quite similar in fold, are oriented somewhat differently with respect to the S domains. Understanding of the structure of turnip crinkle virus has been important for analyzing its assembly, as described in an accompanying paper.  相似文献   

5.
Transthyretin (TTR) amyloidosis is a conformational disturbance, which, like other amyloidoses, represents a life threat. Here, we report a TTR variant, TTR Thr119Met, that has been shown to have a protective role in the development of clinical symptoms in carriers of TTR Val30Met, one of the most frequent variants among TTR amyloidosis patients. In order to understand this effect, we have determined the structures of the TTR Val30Met/Thr119Met double mutant isolated from the serum of one patient and of both the native and thyroxine complex of TTR Thr119Met. Major conclusions are: (i) new H-bonds within each monomer and monomer-monomer inter-subunit contacts, e.g. Ser117-Ser117 and Met119-Tyr114, increase protein stability, possibly leading to the protective effect of the TTR Val30Met/Thr119Met variant when compared to the single variant TTR Val30Met. (ii) The mutated residue (Met119) extends across the thyroxine binding channel inducing conformational changes that lead to closer contacts between different dimers within the tetramer. The data, at atomic resolution, were essential to detect, for the first time, the subtle changes in the inter-subunit contacts of TTR, and explain the non-amyloidogenic potential of the TTR Thr119Met variant, improving considerably current research on the TTR amyloid fibril formation pathway.  相似文献   

6.
7.
The structure of the free-form of Achromobacter protease I (API) at pD 8.0 was refined by simultaneous use of single crystal X-ray and neutron diffraction data sets to investigate the protonation states of key catalytic residues of the serine protease. Occupancy refinement of the catalytic triad in the active site of API free-form showed that ca. 30% of the imidazole ring of H57 and ca. 70% of the hydroxyl group of S194 were deuterated. This observation indicates that a major fraction of S194 is protonated in the absence of a substrate. The protonation state of the catalytic triad in API was compared with the bovine β-trypsin–BPTI complex. The comparison led to the hypothesis that close contact of a substrate with S194 could lower the acidity of its hydroxyl group, thereby allowing H57 to extract the hydrogen from the hydroxyl group of S194. H210, which is a residue specific to API, does not form a hydrogen bond with the catalytic triad residue D113. Instead, H210 forms a hydrogen bond network with S176, H177 and a water molecule. The close proximity of the bulky, hydrophobic residue W169 may protect this hydrogen bond network, and this protection may stabilize the function of API over a wide pH range.  相似文献   

8.
PedB, a bacterial immunity protein conferring immunity to a newly identified pediocin (pediocin PP-1), was crystallized by the hanging-drop vapor diffusion method at 296 K. A 1.35 A data set has been collected from a single crystal at 100 K using synchrotron-radiation source. The PedB crystals belong to the hexagonal space group P6(2) or P6(4), with unit cell parameters a = b = 62.2, c = 39.9 A. Analysis of the packing density shows that the asymmetric unit probably contains one molecule with a solvent content of 33.8%.  相似文献   

9.
DNA dodecamers have been designed with two cytosines on each end and intervening A and T stretches, such that the oligomers have fully complementary A:T base pairs when aligned in the parallel orientation. Spectroscopic (UV, CD and IR), NMR and molecular dynamics studies have shown that oligomers having the sequences d(CCATAATTTACC) and d(CCTATTAAATCC) form a parallel-stranded duplex when dissolved at 1:1 stoichiometry in aqueous solution. This is due to the C:C+ clamps on either end and extensive mismatches in the antiparallel orientation. The structure is stable at neutral and acidic pH. At higher temperatures, the duplex melts into single strands in a highly cooperative fashion. All adenine, cytosine and thymine nucleotides adopt the anti conformation with respect to the glycosidic bond. The A:T base pairs form reverse Watson–Crick base pairs. The duplex shows base stacking and NOEs between the base protons T(H6)/A(H8) and the sugar protons (H1′/H2′/H2″) of the preceding nucleotide, as has been observed in antiparallel duplexes. However, no NOEs are observed between base protons H2/H6/H8 of sequential nucleotides, though such NOEs are observed between T(CH3) and A(H8). A three-dimensional structure of the parallel-stranded duplex at atomic resolution has been obtained using molecular dynamics simulations under NMR constraints. The simulated structures have torsional angles very similar to those found in B-DNA duplexes, but the base stacking and helicoid parameters are significantly different.  相似文献   

10.
Experimental advances in data collection, including bright sources, cryogenic cooling and two-dimensional detectors, have made it tractable to record data to beyond 1.2 Å for several proteins, yielding high-accuracy models and fine details of structure. For small metalloproteins, atomic-resolution data have enabled ab initio solution of the phase problem.  相似文献   

11.
Feig M  Pettitt BM 《Biopolymers》1998,48(4):199-209
Recent results from molecular dynamics (MD) simulations on hydration of DNA with respect to conformation are reviewed and compared with experimental data. MD simulations of explicit solvent around DNA can now give a detailed model of DNA that not only matches well with the experimental data but provides additional insight beyond current experimental limitations. Such simulation results are analyzed with a focus on differential hydration properties between A- and B-DNA and between C/G and A/T base pairs. The extent of hydration is determined from the number of waters in the primary shell and compared to experimental numbers from different measurements. High-resolution hydration patterns around the whole DNA are shown and correlated with the conformations. The role of ions associating with DNA is discussed with respect to changes in the hydration structure correlating with DNA conformation.  相似文献   

12.
X-ray crystallographic analysis of swine pancreas -amylase   总被引:1,自引:0,他引:1  
  相似文献   

13.
The structure of human lactoferrin has been refined crystallographically at 2.8 A (1 A = 0.1 nm) resolution using restrained least squares methods. The starting model was derived from a 3.2 A map phased by multiple isomorphous replacement with solvent flattening. Rebuilding during refinement made extensive use of these experimental phases, in combination with phases calculated from the partial model. The present model, which includes 681 of the 691 amino acid residues, two Fe3+, and two CO3(2-), gives an R factor of 0.206 for 17,266 observed reflections between 10 and 2.8 A resolution, with a root-mean-square deviation from standard bond lengths of 0.03 A. As a result of the refinement, two single-residue insertions and one 13-residue deletion have been made in the amino acid sequence, and details of the secondary structure and tertiary interactions have been clarified. The two lobes of the molecule, representing the N-terminal and C-terminal halves, have very similar folding, with a root-mean-square deviation, after superposition, of 1.32 A for 285 out of 330 C alpha atoms; the only major differences being in surface loops. Each lobe is subdivided into two dissimilar alpha/beta domains, one based on a six-stranded mixed beta-sheet, the other on a five-stranded mixed beta-sheet, with the iron site in the interdomain cleft. The two iron sites appear identical at the present resolution. Each iron atom is coordinated to four protein ligands, 2 Tyr, 1 Asp, 1 His, and the specific Co3(2-), which appears to bind to iron in a bidentate mode. The anion occupies a pocket between the iron and two positively charged groups on the protein, an arginine side-chain and the N terminus of helix 5, and may serve to neutralize this positive charge prior to iron binding. A large internal cavity, beyond the Arg side-chain, may account for the binding of larger anions as substitutes for CO3(2-). Residues on the other side of the iron site, near the interdomain crossover strands could provide secondary anion binding sites, and may explain the greater acid-stability of iron binding by lactoferrin, compared with serum transferrin. Interdomain and interlobe interactions, the roles of charged side-chains, heavy-atom binding sites, and the construction of the metal site in relation to the binding of different metals are also discussed.  相似文献   

14.
Rubredoxin (D.g. Rd), a small non-heme iron-sulfur protein shown to function as a redox coupling protein from the sulfate reducing bacteria Desulfovibrio gigas, has been crystallized using the hanging-drop vapor diffusion method and macroseeding method. Rubredoxin crystals diffract to an ultra-high resolution 0.68 A using synchrotron radiation X-ray, and belong to the space group P2(1) with unit-cell parameters a=19.44 A, b=41.24 A, c=24.10 A, and beta=108.46 degrees. The data set of single-wavelength anomalous dispersion signal of iron in the native crystal was also collected for ab initio structure re-determination. Preliminary analysis indicates that there is one monomer with a [Fe-4S] cluster in each asymmetric unit. The crystal structure at this ultra-high resolution will reveal the details of its biological function. The crystal character and data collection strategy for ultra-high resolution will also be discussed.  相似文献   

15.
Moore PB 《Biochemistry》2001,40(11):3243-3250
The publication of atomic resolution crystal structures for the large ribosomal subunit from Haloarcula marismortui and the small ribosomal subunit from Thermus thermophilus has permanently altered the way protein synthesis is conceptualized and experiments designed to address its unresolved issues. The impact of these structures on RNA biochemistry is certain to be no less profound. The background and substance of these developments are reviewed here.  相似文献   

16.
Atomic resolution structures of 50S and 30S ribosomal particles have recently been solved by X-ray diffraction. These ribosomal structures show often unusual folds of ribosomal RNAs and proteins, and provide molecular explanations for fundamental aspects of translation. In the 50S structure, the active site for peptide bond formation was localized and found to consist of RNA. The ribosome is thus a ribozyme. In the 30S structures, tRNA binding sites were located, and molecular mechanisms for ribosomal fidelity were proposed. The 30S subunit particle has three globular domains, and relative movements of these domains may be required for translocation of the ribosome during protein synthesis. The structures are consistent with and rationalize decades of biochemical analysis of translation and usher in a molecular age in understanding the ribosome.  相似文献   

17.
The nitrophorins from Rhodnius prolixus, the kissing bug, are heme-containing proteins used for the transport of nitric oxide to aide the insect in obtaining a blood meal. The Rhodnius nitrophorins display an eight-stranded antiparallel beta-barrel motif, typical of lipocalins, with a histidine-linked heme in the open end of the barrel. Heme is stabilized in the ferric state and highly distorted, displaying a ruffled conformation that may be of importance in the setting of the reduction potential. To help in understanding the means by which the protein matrix, an inherently soft material, is able to distort the heme from its low-energy planar conformation, we have determined the crystal structure of apo-nitrophorin 4-1.1 A resolution. Removal of the heme from nitrophorin 4 has very little effect on its structure: The heme binding cavity remains open and the loops near the cavity entrance respond to lower pH in the same manner as the intact protein. We conclude that the general stability of the lipocalin fold and apparent rigidity of the beta-barrel provide the means for distorting the heme cofactor.  相似文献   

18.
The allosteric l-lactate dehydrogenase from Lactobacillus casei has been crystallized in its complex with the activators fructose-1,6-diphosphate and Co2+. The enzyme crystallizes in space group C2 with six tetramers in the unit cell. At very low resolution, 00l reflexions are absent for l ≠ 3n. The orientation of the molecular axes has been determined using the rotation function. All tetramers in the unit cell exhibit excellent 222 symmetry, and the overall arrangement resembles the packing that would be expected in the higher symmetry space group P3121. Comparison with the apo-enzyme structure of M4-lactate dehydrogenase from dogfish indicates high structural similarity between these enzymes and allowed us to identify the molecular axes of L. caseil-lactate dehydrogenase in terms of the “standard” molecular co-ordinate system P, Q, R. The similarity of both enzymes is good enough to allow the structure determination of L. caseil-lactate dehydrogenase by molecular replacement using the dogfish enzyme as a model.Sequencing results show that L. caseil-lactate dehydrogenase is lacking the N-terminal arm of vertebrate lactate dehydrogenases and electron density maps at 5 Å resolution indicate that ligands might possibly bind in the region of the missing arm. The active site loop is involved in intermolecular contacts and its structure might be different from both, apo- and ternary dogfish l-lactate dehydrogenase.  相似文献   

19.
Human placental RNase inhibitor (hRI), a leucine-rich repeat protein, binds the blood vessel-inducing protein human angiogenin (Ang) with extraordinary affinity (Ki <1 fM). Here we report a 2.0 A resolution crystal structure for the hRI-Ang complex that, together with extensive mutagenesis data from earlier studies, reveals the molecular features of this tight interaction. The hRI-Ang binding interface is large and encompasses 26 residues from hRI and 24 from Ang, recruited from multiple domains of both proteins. However, a substantial fraction of the energetically important contacts involve only a single region of each: the C-terminal segment 434-460 of hRI and the ribonucleolytic active centre of Ang, most notably the catalytic residue Lys40. Although the overall docking of Ang resembles that observed for RNase A in the crystal structure of its complex with the porcine RNase inhibitor, the vast majority of the interactions in the two complexes are distinctive, indicating that the broad specificity of the inhibitor for pancreatic RNase superfamily proteins is based largely on its capacity to recognize features unique to each of them. The implications of these findings for the development of small, hRI-based inhibitors of Ang for therapeutic use are discussed.  相似文献   

20.
Cyclomaltohexaicosaose (CA26) is folded into two 1(2)/(3) turns long V-helices that are oriented antiparallel. Crystals of complexes of CA26 with NH(4)I(3) and Ba(I(3))(2) are brown and X-ray analyses show that I(3)(-) units are located in the approximately 5 A wide central channels of the V-helices. In the complex with NH(4)I(3), two CA26 molecules are stacked to form 2 x 1(2)/(3) turns long channels harbouring 3 I(3)(-) at 3.66-3.85 A inter I(3)(-) distance (shorter than van der Waals distance, 4.3 A), whereas in the Ba(I(3))(2) complex, CA26 are not stacked and only one I(3)(-) each fills the V-helices. Glucose...I contacts are formed with C5-H, C3-H, C6-H and (at the ends of the V-helices) with O6 in (+) gauche orientation. By contrast, O2, O3, O4 and O6 in the preferred (-) gauche orientation do not interact with I because these distances are >/=4.01 A and exceed the van der Waals I...O sum of radii by about 0.5 A except for one O2...I distance of 3.68 A near the end of one V-helix. Raman spectra indicate that the complexes share the presence of I(3)(-) with blue amylose-iodine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号