首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of fossil pigments deposited in the bottom sediments of Lake Beskie, was used to assess changes in the primary productivity during the past years. Three characteristic periods of lake development were distinguished. These periods correspond with a transformation in the lake's catchment area induced by the development of agriculture. A first period was characterized by intensive inflow of allochthonous matter into the lake, due to agriculture in the catchment area, favouring soil erosion. This erosion and the subsequent increase in mineral fertilization resulted in decrease of sorption ability of the soil. This in turn led to increased leaching of nutrients into the lake which resulted in increased primary production and hypolimnetic anoxia. These high oxygen deficits were characterized by a development of photosynthetic bacteria of the genus Chlorobium, and an intensification of the lake's enrichment, mainly with phosphorus. In a final period organic fertilizers (manure) were used in the catchment area. A noticeable improvement of sorption ability of the soil occurred, migration of nutrients to the lake was inhibited, and primary productivity decreased.  相似文献   

2.
In situ estimates of sediment nutrient flux are necessary to understand seasonal variations in internal loading in lakes. We investigated the sources and sinks of nutrients in the hypolimnion of a small (0.33 km2), relatively shallow (18 m max. depth), eutrophic lake (Lake Okaro, New Zealand) in order to determine changes in sediment nutrient fluxes resulting from a whole lake sediment capping trial using a modified zeolite phosphorus inactivation agent (Z2G1). Sediment nutrient fluxes in the hypolimnion were estimated as the residual term in a nutrient budget model that accounted for mineralisation of organic nutrients, nutrient uptake by phytoplankton and mixing, nitrification, adsorption/desorption and diffusion of dissolved nutrients at the thermocline. Of the total hypolimnetic phosphate and ammonium fluxes during one period of seasonal stratification (2007–08), up to 60 and 50%, respectively, were derived from the bottom sediments, 18 and 24% were due to mineralisation of organic species, 36 and 28% were due to phytoplankton uptake and 9 and 6% were from diffusion across the thermocline. Adsorption/desorption of phosphate to suspended solids and nitrification were of minor (<8%) importance to the total fluxes. Any reduction in sediment nutrient release by Z2G1 was small compared with both the total sediment nutrient flux and the sum of other hypolimnetic fluxes. Uneven sediment coverage of Z2G1 may have been responsible for the limited effect of the sediment capping layer formed by Z2G1.  相似文献   

3.
1. The ecosystem response of Lake Tanganyika was studied using a four-component, nutrient–phytoplankton–zooplankton–detritus, phosphorus-based ecosystem model coupled to a nonlinear, reduced-gravity, circulation model. The ecosystem model, an improved version of the earlier eco-hydrodynamics model developed for Lake Tanganyika, was used to estimate the annual primary production of Lake Tanganyika and its spatial and temporal variability. The simulations were driven with the National Centres for Environmental Protection (NCEP) records for winds and solar radiation forcing.
2. The simulated annual cycles of the four ecosystem variables and the daily net primary production were compared with the observations. The comparison showed that simulations reproduced realistically the general features of the annual cycles of epilimnial phosphate, net primary production and plankton dynamics.
3. The climatic simulations for the years 1970–2006 yielded a daily averaged integrated upper layer net production ranging from 0.11 to 1.78 g C m−2 day−1 and daily averaged chlorophyll- a (chl- a ) from 0.16 to 4.3 mg m−3. Although the nutrient concentrations in the epilimnion during the strong wind years were high, the net production was low, which is partly because of the greater vertical mixing, produced by strong winds, exposing the phytoplankton to low light conditions in deeper waters. The simulated annual net production and chl- a agreed quite well with observed production available in the literature.
4. We envisage using this model to predict the future scenarios of primary productivity in the lake.  相似文献   

4.
The relatively low biodiversity and simple hydrodynamics make solar salt ponds ideal sites for ecological studies. We have studied the ecological gradient of the primary ponds at the Shark Bay Resources solar salt ponds, Western Australia, using a coupled hydrodynamic ecological numerical model, DYRESM–CAEDYM. Seven ponds representative of the primary system were simulated with salinity ranging from 45 to 155 ppt. Five groups of organisms were simulated: three phytoplankton, one microbial mat plankton, and one zooplankton as well as dissolved inorganic and particulate organic nitrogen, phosphorus, and carbon. By extracting the various carbon fluxes from the model, we determined the role that the introduced zooplankton, Artemia sp., plays in grazing the particulate organic carbon (POC) from the water column in the high salinity ponds. We also examined the nutrient fluxes and stoichiometric ratios of the various organic components for each pond to establish the extent to which observed patterns in nutrient dynamics are mediated by the presence of Artemia sp. Model results indicated that Artemia sp. grazing was responsible for reduced water column POC in the higher salinity ponds. This resulted in an increase in photosynthetic available radiation (PAR) reaching the pond floor and consequent increase in microbial mat biomass, thus demonstrating the dual benefits of Artemia sp. to salt production in improved quality and quantity. In contrast, this study found no direct link between Artemia sp. and observed changes in planktonic algal species composition or nutrient limitation across the salinity gradient of the ponds. Guest Editors: J. John & B. Timms Salt Lake Research: Biodiversity and Conservation—Selected Papers from the 9th Conference of the International Society for Salt Lake Research  相似文献   

5.
Lepori  Fabio  Capelli  Camilla 《Hydrobiologia》2021,848(3):613-629
Hydrobiologia - Attempts to restore Lake Lugano, Switzerland and Italy, from eutrophication have produced weak responses in the target variables (primary productivity and hypolimnetic oxygen...  相似文献   

6.
Although lakes play a major role in the storage of organic carbon, processes involved are not yet very well characterized, especially for oligotrophic lakes. Whether a lake functions as a net source or sink for carbon depends on relative rates of primary production, inputs of terrestrial organic matter and respiration. The microbial community will affect the efficiency of carbon cycling and thereby potential carbon storage. Because the organic matter fluxes are smaller in oligotrophic lakes they have been studied less intensively with respect to their carbon cycling compared to eutrophic lakes. Whether they play an appreciable role in freshwater carbon cycling relies on unraveling primary and secondary production. Here we present the results from such a study in oligotrophic Lake Lucerne, Switzerland. Based on in situ carbon isotopic labelling experiments using dark, glucose-labelled and transparent, DIC-labelled bottles positioned at different depths in the water column, we conclude that even though the photic zone was very deep, integrated primary productivity was consistently low. The carbon processing efficiency of the heterotrophic producers was such that photosynthesized organic matter was fully consumed, even during times of maximum productivity. This implies that the heterotrophic producers were well adapted to rapidly respond to a temporary increase in primary productivity, which is in line with calculated bacterial growth efficiencies in the surface water layer. Highest glucose-based productivity, as a measure of the heterotrophic potential, was observed in the deepest parts of the water column. Chemoautotrophy was shown at 60 m water depth and is of relatively minor importance for overall fluxes. Mixotrophy was recognized as a strategy to keep up production when light conditions become less favorable for autotrophic growth. A mesocosm experiment earlier in the year indicated lower primary production, which agrees well with the timing of this experiment preceding the annual spring bloom. During the low-productivity season the coupling between phytoplankton and bacterial production was much weaker and potentially more organic matter could escape recycling at that time, although quantitatively fluxes remained very low.  相似文献   

7.

A 4.6-ha urban stormwater treatment wetland complex in southwest Florida has been investigated for several years to understand its nutrient retention dynamics. This study investigates the role of aquatic vegetation, both submerged vegetation (such as benthic macrophytic and algal communities) and emergent plant communities, on changes in nutrient fluxes through the wetlands. Gross and net primary productivity of water column communities and net primary productivity of emergent macrophytes were used to estimate nutrient fluxes through vegetation in these wetlands using biannual biomass, nutrient concentrations of plant material, and areal coverage data. Emergent macrophyte net primary productivity was estimated as the difference between the increase of productivity during the wet season and the loss during the dry season which, in turn, suggested approximately 0.11g-N m??2 y??1 and 0.09g-P m??2 yr??2 being removed, primarily from the soil, by emergent vegetation. Water column primary productivity accounted for a much larger flux of nutrients with approximately 39.6g-N m??2 yr??1 and 2.4g-P m??2 yr??1 retained in algal communities. These fluxes, combined with measurements in parallel studies, allowed us to develop preliminary nutrient budgets for these wetlands and identify gaps, or missing fluxes, in our models for these wetlands. The results further validated previous findings that suggested that there are large inputs of nitrogen (up to 62.3g-N m??2 yr??1) that are not accounted for by the pumped inflow. Additionally, management suggestions are provided to improve water quality by identifying vegetative species that are most effective at retaining nutrients.

  相似文献   

8.
Because of major biochemical imbalances between plants and animals, ecological efficiency at this interface may have a major impact on overall energy flow in ecosystems. In order to study relationships between seston food quality and energy transfer between primary producers and herbivores, we conducted five microcosm experiments in Castle Lake, California, USA during the summer of 1996. We simultaneously performed life table experiments to determine the effects of highly unsaturated fatty acids (HUFA) on Daphnia rosea growth, reproduction and survival. The results of these experiments suggest strong energy limitation of D. rosea growth in Castle lake during the study. D. rosea production was coupled with primary production in Castle Lake and in the microcosm experiments. D. rosea production efficiencies, i.e., the ratios of D. rosea productivity to primary productivity, decreased towards the end of the summer. A food quality index based on phytoplankton species composition and seston carbon to phosphorus (C:P) ratio were good predictors of D. rosea production efficiencies. The predicted D. rosea production pattern based on phytoplankton composition and primary productivity matched the zooplankton biomass dynamics in Castle Lake during 1991. Life table experiments showed HUFA effects on D. rosea population growth rates, reproduction and survival in support of the HUFA limitation hypothesis.  相似文献   

9.
Lake Baikal, Russian Siberia, was sampled in July 1990 during the period of spring mixing and initiation of thermal stratification. Vertical profiles of temperature, dissolved nutrients (nitrate and soluble reactive phosphorus), phytoplankton biomass, and primary productivity were determined in an eleven-station transect encompassing the entire 636 km length of the lake. Pronounced horizontal variability in hydrodynamic conditions was observed, with the southern region of the lake being strongly thermally stratified while the middle and north basins were largely isothermal through July. The extent of depletion of surface water nutrients, and the magnitude of phytoplankton biomass and productivity, were found to be strongly correlated with the degree of thermal stratification. Horizontal differences likely reflected the contribution of two important factors: variation in the timing of ice-out in different parts of the lake (driving large-scale patterns of thermal stratification and other limnological properties) and localized effects of river inflows that may contribute to the preliminary stabilization of the water column in the face of intense turbulent spring mixing (driving meso-scale patterns). Examination of the relationships between surface water inorganic N and P depletion suggested that during the spring and early summer, phytoplankton growth in unstratified portions of the lake was largely unconstrained by nutrient supplies. As summer progressed, the importance of co-limitation by both N and P became more apparent. Uptake and regeneration rates, measured directly using the stable isotope 15N, revealed that phytoplankton in stratified portions of the lake relied primarily on NH4 as their N source. Rates of NH4 regeneration were in approximate equilibrium with uptake; both processes were dominated by organisms <2 µm. This pattern is similar to that observed for oligotrophic marine systems. Our study underscores the importance of hydrodynamic conditions in influencing patterns of biological productivity and nutrient dynamics that occur in Lake Baikal during its brief growing season.  相似文献   

10.
Benthic flux measurements of O2, TCO2 and inorganic nutrients were made at three stations (seagrass beds, shallow bare sand and deep mud) in Lake Illawarra (Australia) to compare the characteristics of diagenesis and benthic biogeochemical processes for different primary producers (seagrass or microphytobenthos, (MPB)) and/or sediment types (sand or mud).Seagrass beds exhibited the highest gross primary productivity while the lowest rates occurred at the deep mud station. At the shallow bare sand station only, the gross primary production (GPP) and respiration (R) were balanced, while at the other two stations, R exceeded GPP by as much as 2 fold, indicating more organic carbon was decomposed than produced at the time of sampling. In general, nutrient fluxes displayed typical diurnal variation.Organic carbon oxidation scenarios, evaluated by either calcium carbonate dissolution or sulfate reduction models, indicated that both models can represent organic matter mineralization. The difference of estimated total carbon oxidized in this lake using the two models was small, ranging from 0.2% at deep mud station to maximum of 21% at seagrass station. In addition, N2 flux rates (net denitrification), estimated using carbon and nitrogen stoichiometry, were of similar magnitude as the rates estimated using LOICZ budget modeling or measured using the N2/Ar technique.Finally, a comparison of calculated diffusive fluxes and measured fluxes using incubation cores indicated that the results were of similar magnitude at the deep mud station, but the incubation cores fluxes were much higher than the calculated diffusive fluxes at the other two stations. This may have been caused by bioturbation or bioirrigation.  相似文献   

11.
Bacterioplankton abundance and production were followed during one decade (1991–2001) in the hypertrophic and steeply stratified small Lake Verevi (Estonia). The lake is generally dimictic. However, a partly meromictic status could be formed in specific meteorological conditions as occurred in springs of 2000 and 2001. The abundance of bacteria in Lake Verevi is highly variable (0.70 to 22 × 106 cells ml−1) and generally the highest in anoxic hypolimnetic water. In 2000–2001, the bacterial abundance in the hypolimnion increased probably due to meromixis. During a productive season, heterotrophic bacteria were able to consume about 10–40% of primary production in the epilimnion. Our study showed that bacterioplankton in the epilimnion was top-down controlled by predators, while in metalimnion bacteria were dependent on energy and carbon sources (bottom-up regulated). Below the thermocline hypolimnetic bacteria mineralized organic matter what led to the depletion of oxygen and created anoxic hypolimnion where rich mineral nutrient and sulphide concentrations coexisted with high bacterial numbers.  相似文献   

12.
Productivity of clear and humic lakes: nutrients,phytoplankton, bacteria   总被引:1,自引:1,他引:0  
Nürnberg  Gertrud K.  Shaw  Margo 《Hydrobiologia》1998,382(1-3):97-112
The relationships between long-term surface average concentrations of humic acids measured as water colour, dissolved organic carbon (DOC) or Secchi disk transparency and trophic state variables were studied with literature data from more than 600 freshwater lakes. The geometric means of summer surface average nutrient (phosphorus and nitrogen) concentration, phytoplankton biomass (chlorophyll concentration), and hypolimnetic anoxia (anoxic factor) were significantly higher in coloured than in clear lakes. The regressions of colour or DOC on these trophic state variables were positive and significant throughout a range of three orders of magnitude. Phytoplankton or primary productivity was higher in coloured lakes, when expressed per volume of epilimnion. Annual integral primary productivity expressed on an areal basis was smaller in coloured lakes, probably a reflection of shallower phototrophic depths in these lakes. There is evidence that annual integral bacteria productivity is much higher in coloured lakes for two reasons: first, epilimnetic bacteria production was ca. four times higher in coloured lakes, second, other studies have shown that hypolimnetic bacteria production is commonly higher than epilimnetic production, especially in anoxic hypolimnia that are frequent in coloured lakes. All volumetrically expressed variables indicated higher productivity in coloured lakes. In addition, high bacteria productivity reflects a different food chain involving mixotrophs, possibly compensating for low light conditions. Our analyses indicate that primary and secondary productivity is as high as or higher than in clear lakes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
We characterized the arsenate-reducing, sulfide-oxidizing population of Mono Lake, California, by analyzing the distribution and diversity of rrnA, cbbL, and dissimilatory arsenate reductase (arrA) genes in environmental DNA, arsenate-plus sulfide-amended lake water, mixed cultures, and isolates. The arsenate-reducing community was diverse. An organism represented by an rrnA sequence previously retrieved from Mono Lake and affiliated with the Desulfobulbaceae (Deltaproteobacteria) appears to be an important member of the arsenate-reducing, sulfide-oxidizing community. Sulfide oxidation coupled with arsenate reduction appears to proceed via a two-electron transfer, resulting in the production of arsenite and an intermediate S compound that is subsequently disproportionated. A realgar-like As/S mineral was formed in some experiments.  相似文献   

14.
It has been hypothesized that global warming will strengthen upwelling‐favorable winds in the Northern Humboldt Current System (NHCS) as a consequence of the increase of the land–sea thermal gradient along the Peruvian coast. The effect of strengthened winds in this region is assessed with the use of a coupled physical–biogeochemical model forced with projected and climatological winds. Strengthened winds induce an increase in primary production of 2% per latitudinal degree from 9.5°S to 5°S. In some important coastal upwelling sites primary production is reduced. This is due to a complex balance between nutrient availability, nutrient use efficiency, as well as eddy‐ and wind‐driven factors. Mesoscale activity induces a net offshore transport of inorganic nutrients, thus reducing primary production in the coastal upwelling region. Wind mixing, in general disadvantageous for primary producers, leads to shorter residence times in the southern and central coastal zones. Overall, instead of a proportional enhancement in primary production due to increased winds, the NHCS becomes only 5% more productive (+5 mol C m?2 year?1), 10% less limited by nutrients and 15% less efficient due to eddy‐driven effects. It is found that regions with a initial strong nutrient limitation are more efficient in terms of nutrient assimilation which makes them more resilient in face of the acceleration of the upwelling circulation.  相似文献   

15.
Application of mathematical models in the design and evaluation of lake restoration programmes must include due consideration of three basic concepts of model development; 1) that the model framework is appropriately matched to the intended management use, 2) that selection of the proper degree of model complexity is fundamental to the achievement of model credibility and 3) that field and laboratory studies must be designed and interpreted with the aid of the model to insure development of a comprehensive, integrated tool.These concepts are demonstrated for the case of lake restoration efforts in Green Bay (Lake Michigan, USA). Striking gradients in water quality (transparency, algal standing crop, hypolimnetic oxygen depletion) and trophic state occur along the major axis of the bay in response to phosphorus loaded from the Fox River. A simple model for gross primary production is developed to permit calculation of the relative importance of internal carbon production to the total organic carbon budget of the bay. Primary production varies from high rates over a limited photic depth in the turbid, phosphorus-rich waters of the eutrophic portions of the bay to low rates over an extensive photic depth in the transparent, phosphoruspoor reaches of the oligotrophic regions. Internal production accounts for approximately 90% of the total organic carbon loaded to the system over the summer growing season. Water quality management strategies must address the stimulation of primary production by phosphorus loaded from the Fox River in any attempt to lower the standing crop of nuisance algae, improve water clarity, and reduce rates of hypolimnetic oxygen depletion in Green Bay.  相似文献   

16.
The coupling of primary and bacterial production over depthwas examined in three lakes which differed greatly in verticalpatterns of primary productivity. We measured bacterial production,chlorophyll and light, and estimated primary production in PaulLake (Gogebic County, Michigan) and Crystal and Trout lakes(Vilas County, Wisconsin) during the summer stratification period(May–September 1991). Bacterial productivity was measuredusing the [3H]leucine incorporation method and primary productivityestimated from measured photosynthesis–irradiance relationships.Three distinct vertical patterns were observed. In Paul Lake,bacterial production was highest at the interface between theaerobic and anaerobic layers, well below the depth of maximumprimary production. In Crystal Lake, bacterial production wasuniform with depth, although primary productivity was highestin the hypolimnion. In the largest lake. Trout Lake, primaryand bacterial production tended to co-vary with maximum ratesof both processes occurring in the metalimnion. Overall, bacterialproductivity was poorly related to contemporaneous primary productionin the three lakes, suggesting that other factors, such as nutrientrecycling, phytoplankton loss rates and allocthonous loading,determine patterns in the depth distribution of bacterial productivity.  相似文献   

17.
Qu  Wenchuan  Morrison  R. J.  West  R. J. 《Hydrobiologia》2003,492(1-3):119-127
Rates of inorganic nutrient and oxygen fluxes, and gross community primary productivity were investigated using incubated cores in July, August and September 2001, in a seagrass meadow of Lake Illawarra, a barrier estuary in New South Wales, Australia. The results indicated that rates of gross primary productivity were high, varying from C = 0.62 to 1.89 g m–2 d–1; low P/R ratios of 0.28–0.48 define the system as heterotrophic and indicate that more carbon is respired than is produced. In order to determine the effect of macroalgae on O2 and nutrient fluxes, measurements were also conducted on cores from which the macroalgae had been removed. The results showed that the O2 fluxes during light incubations were significantly lower in the cores without macroalgae (P<0.01), indicating that macroalgae could be a significant contributor to the primary production in the lake. In general, nutrient fluxes showed a typical diurnal variation with an efflux from sediments in the dark and a reduced efflux (or uptake) in the light. Dissolved inorganic nitrogen (NO2 + NO3 +NH4 +) net fluxes were directed from the sediments towards the water column and dominated by the NH4 + fluxes (>80%). NO2 + NO3 and o-P fluxes were always very low during the sampling period. The increasing tendency of net nutrient effluxes, especially NH4 + from July to September, is consistent with the increase of the water temperature and seagrass biomasses. However, in September, significantly lower light, dark and net NH4 + effluxes were found in the cores with macroalgae (SA-sediments) compared with the cores without macroalgae (S-sediments). These results support the hypothesis that actively-growing dense macroalgal mats (i.e., algal blooms in September) may act as a filter reducing the flux of nutrients to the water column.  相似文献   

18.
Yield and productivity are critical for the economics and viability of a bioprocess. In metabolic engineering, the main objective is the increase of a target metabolite production through genetic engineering. However, genetic manipulations usually result in lower productivity due to growth impairment. Previously, it has been shown that the dynamic control of metabolic fluxes can increase the amount of product formed in an anaerobic batch fermentation of Escherichia coli. In order to apply this control strategy, the genetic toggle switch is used to manipulate key fluxes of the metabolic network. We have designed and analyzed an integrated computational model for the dynamic control of gene expression. This controller, when coupled to the metabolism of E. coli, resulted in increased bioprocess productivity.  相似文献   

19.
A model is presented for the coupled processes of bacterial growth and convective transport of bacteria has been modeled using a fractional flow approach. The various mechanisms of bacteria retention can be incorporated into the model through selection of an appropriate shape of the fractional flow curve. Permeability reduction due to pore plugging by bacteria was simulated using the effective medium theory. In porous media, the rates of transport and growth of bacteria, the generation of metabolic products, and the consumption of nutrients are strongly coupled processes. Consequently, the set of governing conservation equations form a set of coupled, nonlinear partial differential equations that were solved numerically. Reasonably good agreement between the model and experimental data has been obtained indicating that the physical processes incorporated in the model are adequate. The model has been used to predict the in situ transport and growth of bacteria, nutrient consumption, and metabolite production. It can be particularly useful in simulating laboratory experiments and in scaling microbial-enhanced oil recovery or bioremediation processes to the field. (c) 1994 John Wiley & Sons, Inc.  相似文献   

20.
Wang Y  Zhang N  Yu GR 《应用生态学报》2010,21(7):1656-1666
应用改进后的碳水循环过程模型——景观尺度生态系统生产力过程模型(ecosystem productivity process model for landscape,EPPML)模拟了2003和2004年千烟洲马尾松人工林生态系统的碳循环过程,并对模型参数的敏感性进行了分析.结果表明:EPPML可用于模拟千烟洲马尾松人工林的碳循环过程,不仅总初级生产力(GPP)、生态系统净生产力(NEP)和生态系统总呼吸(Re)的年总值和季节变化与实测值十分吻合,而且也能反映极端天气对碳流的重要影响;千烟洲马尾松人工林生态系统具有较强的净碳吸收能力,但2003年生长最旺季的高温和重旱天气的耦合作用使其碳吸收能力明显低于2004年,2003和2004年平均NEP分别为481.8和516.6gC.m-2.a-1;马尾松生长初期的光照、生长旺期的干旱、生长末期的降水量是改变碳循环季节变化的关键气象条件;自养呼吸(Ra)与净初级生产力(NPP)的季节进程一致;异养呼吸(Rh)在年尺度上受土壤温度控制,而在月尺度上则受土壤含水量波动的影响;在生长季的丰水期,土壤含水量越大,Rh越小;而在生长季的枯水期,前两个月的降雨量越大,Rh也越大.EPPML参数中,25℃时的最大RuBP羧化速率(Vm25)、比叶面积(SLA)、最大叶N含量(LNm)、平均叶含N量(LN)、生物量与碳的转换率(C/B)对年NEP的影响最大;不同碳循环过程变量对敏感参数变化的响应也不尽相同,其中,Vm25和LN的增加能有效促进植物的碳吸收和呼吸;LN/LNm越小,对碳吸收和呼吸的抑制作用越强;C/B和SLA的增大会促进碳吸收,抑制呼吸.将全年区分为生长季与非生长季时得到的最敏感参数的结论与全年不尽相同.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号