首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Humans share about 99% of their genomic DNA with chimpanzees and bonobos; thus, the differences between these species are unlikely to be in gene content but could be caused by inherited changes in regulatory systems. Endogenous retroviruses (ERVs) comprise approximately 5% of the human genome. The LTRs of ERVs contain many regulatory sequences, such as promoters, enhancers, polyadenylation signals and factor-binding sites. Thus, they can influence the expression of nearby human genes. All known human-specific LTRs belong to the HERV-K (human ERV) family, the most active family in the human genome. It is likely that some of these ERVs could have integrated into regulatory regions of the human genome, and therefore could have had an impact on the expression of adjacent genes, which have consequently contributed to human evolution. This review discusses possible functional consequences of ERV integration in active coding regions.  相似文献   

3.
4.
5.
Cui J  Holmes EC 《Journal of virology》2012,86(6):3383-3385
By screening 74 chordate genomes for endogenous lentiviruses using Pol sequences of exogenous lentiviruses as a reference, we identified a novel endogenous lentivirus in the genome of the ferret (Mustela putorius furo). Phylogenetic analysis suggested that the ferret endogenous lentivirus, denoted ELVmpf, diverged early in the evolution of the mammalian lentiviruses, although with a lack of resolution at key nodes. These data support the notion that lentiviruses have evolved on timescales of millions of years.  相似文献   

6.
A M Krieg  M F Gourley  A Perl 《FASEB journal》1992,6(8):2537-2544
The genomes of all organisms, from yeast to humans, contain thousands of endogenous retroviruses (ERV). In most species all or almost all ERV are noninfectious, but some ERV retain open reading frames capable of encoding proteins. RNA and proteins derived from ERV are expressed in humans and other species. Until recently, there was little evidence that this ERV expression resulted in any immunologic effects. Recent studies make it increasingly clear that some ERV have important immunologic effects. The immune effects of ERV expression raise the question of a possible pathogenic role in idiopathic autoimmune diseases. Interest in this question has been heightened by the observation that some infectious retroviruses cause manifestations of autoimmunity. Nonetheless, attempts to isolate infectious retroviruses from patients with idiopathic autoimmune diseases have generally failed. The possible role of ERV in idiopathic autoimmune diseases has not yet been fully explored. This review focuses on the known and the potential immune effects of ERV, especially as they may relate to autoimmune diseases.  相似文献   

7.
Gao F  Zhang CT 《The FEBS journal》2006,273(8):1637-1648
The availability of the complete chicken genome sequence provides an unprecedented opportunity to study the global genome organization at the sequence level. Delineating compositionally homogeneous G + C domains in DNA sequences can provide much insight into the understanding of the organization and biological functions of the chicken genome. A new segmentation algorithm, which is simple and fast, has been proposed to partition a given genome or DNA sequence into compositionally distinct domains. By applying the new segmentation algorithm to the draft chicken genome sequence, the mosaic organization of the chicken genome can be confirmed at the sequence level. It is shown herein that the chicken genome is also characterized by a mosaic structure of isochores, long DNA segments that are fairly homogeneous in the G + C content. Consequently, 25 isochores longer than 2 Mb (megabases) have been identified in the chicken genome. These isochores have a fairly homogeneous G + C content and often correspond to meaningful biological units. With the aid of the technique of cumulative GC profile, we proposed an intuitive picture to display the distribution of segmentation points. The relationships between G + C content and the distributions of genes (CpG islands, and other genomic elements) were analyzed in a perceivable manner. The cumulative GC profile, equipped with the new segmentation algorithm, would be an appropriate starting point for analyzing the isochore structures of higher eukaryotic genomes.  相似文献   

8.
9.
10.
Minisatellite DNA markers in the chicken genome   总被引:1,自引:0,他引:1  
This paper reports the detailed characterization of multilocus minisatellite DNA fingerprints in the chicken. Results are presented of DNA fingerprint segregation analyses carried out in three chicken pedigrees, calculating the number of detected loci, testing for Mendelian inheritance, and cosegregation among fingerprint bands. Two pedigrees (families 1 and 2) were analysed using the Jeffreys probes 33.6 and 33.15 only, and one pedigree (family 3) was analysed using 33.6, 33.15. 3′α-globin HVR and M13 protein III gene repeat. Mean band transmission frequencies in families 1 and 2 were near to the Mendelian expectation of 0.5 and no mutations were observed. Family 3 showed transmission frequencies slightly exceeding 0.5. Linkage among bands was higher than observed in some other avian species, with each allele represented by a mean of 1.48 HaeIII fragments. Cosegregation of heterozygous parental fragments representing distinguishable loci followed the expected binomial distribution. The number of minisatellites detectable by the four probes was estimated to be 217. The pattern of cosegregation among those minisatellite loci was tested against that expected for different levels of recombination through the use of a simulation model. We conclude that most minisatellites are unlinked and probably widely dispersed in the chicken genome.  相似文献   

11.
Functional genes mapped on the chicken genome   总被引:8,自引:0,他引:8  
Microsatellite polymorphisms are finding increasing use in genetics. In addition to the random isolation of microsatellite markers, such markers can also be developed from sequences already present in public domain databases. An advantage of public domain databases is that these microsatellites are known to be located within or close to identified functional genes. In this study the GenBank and EMBL databases were screened for microsatellite markers and primers were defined for amplification. Subsequently, these markers were tested on a panel of five different birds from layer and broiler stocks and on the international reference families: the East Lansing reference family and the Compton reference family. Of the 33 loci tested, 25 were polymorphic on the test panel and from these 25, 14 were polymorphic in one or both reference families. Twelve of the 14 loci that could be mapped fell into previously defined linkage groups. The other two markers were not linked. Because three of the loci had previously been mapped to specific chromosomes by in situ hybridization, linkage groups E6 and C3 could be assigned to chromosome 6, E5 and C17 to chromosome 4 and E21 to one of the microchromosomes.  相似文献   

12.
Eight in silico W-specific sequences from the WASHUC1 chicken genome assembly gave female-specific PCR products using chicken DNA. Some of these fragments gave female-specific products with turkey and peacock DNA. Sequence analysis of these 8 fragments (3077 bp total) failed to detect any polymorphisms among 10 divergent chickens. In contrast, comparison of the DNA sequences of chicken with those of turkey and peacock revealed a nucleotide difference every 25 and 28 bp, respectively. Radiation hybrid mapping verified that these amplicons exist only on chromosome W. The homology of 6 W-specific fragments with chromo-helicase-DNA-binding gene and expressed sequenced tags from chicken and other species indicate that these fragments may have or have had a biological function. These fragments may be used for early sexing in commercial chicken and turkey flocks.  相似文献   

13.
Horie M  Tomonaga K 《Uirusu》2010,60(2):143-153
Approximately 8% of our genome is made up of endogenous retroviral elements. Endogenous retrovirus is a fossil record of ancient retrovirus infection and, therefore, gives important insights into the evolutional relationship between retroviruses and their hosts. On the other hand, until recently, it has been believed that no endogenous non-retroviral viruses exist in animal genomes. We lately discovered endogenous elements homologous to the nucleoprotein of bornaviruses, a negative-strand RNA virus, in the genomes of many mammalian species, including humans. We also demonstrated that mRNA of extant mammalian bornavirus, Borna disease virus, is reverse-transcribed and integrated into the host genome DNA. These findings provided novel insights not only into the interaction between RNA viruses and their hosts, but also into the mechanism underlying the gain of novelty in mammalian genomes. In this review, we will briefly summarize our recent knowledge about endogenous bornavirus elements and also introduce some recent discoveries regarding endogenous elements of non-retroviral viruses in vertebrate genomes.  相似文献   

14.
The chicken genome and the developmental biologist   总被引:5,自引:0,他引:5  
Recently the initial draft sequence of the chicken genome was released. The reasons for sequencing the chicken were to boost research and applications in agriculture and medicine, through its use as a model of vertebrate development. In addition, the sequence of the chicken would provide an important anchor species in the phylogenetic study of genome evolution. The chicken genome project has its roots in a decade of map building by genetic and physical mapping methods. Chicken genetic markers for map building have generally depended on labour intensive screening procedures. In recent years this has all changed with the availability of over 450,000 EST sequences, a draft sequence of the entire chicken genome and a map of over 1 million SNPs. Clearly, the future for the chicken genome and developmental biology is an exciting one. Through the integration of these resources, it will be possible to solve challenging scientific questions exploiting the power of a chicken model. In this paper we review progress in chicken genomics and discuss how the new tools and information on the chicken genome can help the developmental biologists now and in the future.  相似文献   

15.
Organization of nucleotide sequences in the chicken genome   总被引:3,自引:0,他引:3  
The four major components of chicken DNA were prepared by density gradient centrifugation and characterized in several basic properties: relative amounts, dG + dC content, buoyant densities, compositional heterogeneity, and reassociation kinetics. While the relative amounts and the compositions of the major components of chicken DNA were similar to those found in mammalian genomes, their compositional heterogeneities were found to be narrower. The relative amounts of interspersed repeated and unique sequences were strikingly different in different components and also different from those found in the corresponding major components of mouse and human DNAs. If one takes into consideration that major DNA components (a) account for practically all of main-band DNA and (b) derive by preparative breakage from very long DNA segments of fairly homogeneous composition, the isochores, our findings indicate that the distribution of interspersed repeats is different in different chromosomal regions and is species-specific.  相似文献   

16.
The organization of the chicken genome was investigated by centrifuging chicken DNA (Mr = 57 X 10(6) in preparative Cs2SO4/Ag+ and Cs2SO4/BAMD density gradients [BAMD = 3.6-bis(acetato-mercurimethyl)dioxane]. An analysis by CsCl density gradient of the DNA fractions obtained from the preparative experiments revealed that 88% of the genome is made up of four DNA components, characterized by buoyant densities of 1.699, 1.702(5), 1.704(5) and 1.708 g/cm3 and representing 39%, 25%, 15%, and 9%, respectively, of the total DNA. The remaining 12% of the genome is formed by seven minor and/or satellite components. The distribution of the ovalbumin gene in a Cs2CO4/BAMD density gradient, as tested with a cloned cDNA probe, coincides with the distribution of the 1.702(5)-g/cm3 component. This shows that the DNA regions flanking the ovalbumin gene are homogeneous in base composition over along distances and that the gene is located on a DNA segment belonging to the 1.702(5)-g/cm3 component.  相似文献   

17.
Using an assay for retrotransposition detection (T. Heidmann, O. Heidmann, and J. F. Nicolas, Proc. Natl. Acad. Sci. USA 85:2219-2223, 1988), we demonstrated that a defective retrovirus deleted for the gag, pol, and env open reading frames can disperse in the genome of human HeLa cells by intracellular transposition, at a frequency close to 10(-6) events per cell per generation. Transposition requires cooperation in trans for the gag and pol gene products and may be associated with the release of low amounts of noninfectious retroviruslike particles which are the hallmarks but not the intermediates of this transposition process. Similar events could account for the dispersion at high copy number of some of the human endogenous sequences related to retroviruses and for the occurrence of noninfectious retroviruslike particles in human placenta and several tumor cell lines (reviewed by E. Larsson, N. Kato, and M. Cohen, Curr. Top. Microbiol, Immunol, 148:115-132, 1989).  相似文献   

18.
Endogenous pararetroviruses: two-faced travelers in the plant genome   总被引:2,自引:0,他引:2  
Endogenous plant pararetroviruses (EPRVs) were identified as integrated counterparts of most members of the plant virus family Caulimoviridae and represent repetitive elements that are ubiquitous in the plant kingdom. They are often located in pericentromeric regions of plant chromosomes in the vicinity of retrotransposon sequences. Depending on their structure and sequence integrity, some EPRVs are able to replicate and to initiate viral infection. However, conservation of integrated sequences in plant genomes might indicate benefits for the host during evolution. Understanding EPRV activation and control by the host could have important implications for plant breeding strategies to prevent viral disease caused by EPRVs in newly generated cultivars.  相似文献   

19.
A preliminary linkage map of the chicken genome.   总被引:17,自引:0,他引:17  
N Bumstead  J Palyga 《Genomics》1992,13(3):690-697
We have used backcross progeny from a cross between two inbred lines of chickens to construct a linkage map of the chicken. The map currently consists of 100 loci, identified using either anonymous cloned fragments of genomic DNA or sequences corresponding to cloned genes. Parent birds were derived from two lines of White Leghorn chickens, which differ in susceptibility to a number of diseases. Restriction fragment length variants were identified by comparison of the DNA of these two parent birds using a panel of seven restriction enzyme digests and the segregation pattern observed in progeny of these two birds. Restriction fragment length variants were detected for approximately 41% of the clones tested, whether these were known genes or random genomic fragments. This high level of variability was also reflected in the presence of variation within the parental lines for some clones. The overall size of the linkage groups and the progressively higher incidence of linkage as further clones were added suggests that the map covers the majority of the genome, although it is unlikely that there are marker loci on all the microchromosomes. The present map will be of use in locating genes affecting disease resistance, but also illustrates the relative ease with which such maps for the chicken can be constructed.  相似文献   

20.
G protein-coupled receptors (GPCRs) are one of the largest families of proteins, and here we scan the recently sequenced chicken genome for GPCRs. We use a homology-based approach, utilizing comparisons with all human GPCRs, to detect and verify chicken GPCRs from translated genomic alignments and Genscan predictions. We present 557 manually curated sequences for GPCRs from the chicken genome, of which 455 were previously not annotated. More than 60% of the chicken Genscan gene predictions with a human ortholog needed curation, which drastically changed the average percentage identity between the human-chicken orthologous pairs (from 56.3% to 72.9%). Of the non-olfactory chicken GPCRs, 79% had a one-to-one orthologous relationship to a human GPCR. The Frizzled, Secretin, and subgroups of the Rhodopsin families have high proportions of orthologous pairs, although the percentage of amino acid identity varies. Other groups show large differences, such as the Adhesion family and GPCRs that bind exogenous ligands. The chicken has only three bitter Taste 2 receptors, and it also lacks an ortholog to human TAS1R2 (one of three GPCRs in the human genome in the Taste 1 receptor family [TAS1R]), implying that the chicken's ability and mode of detecting both bitter and sweet taste may differ from the human's. The chicken genome contains at least 229 olfactory receptors, and the majority of these (218) originate from a chicken-specific expansion. To our knowledge, this dataset of chicken GPCRs is the largest curated dataset from a single gene family from a non-mammalian vertebrate. Both the updated human GPCR dataset, as well the chicken GPCR dataset, are available for download.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号