首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The compatible solute 1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (ectoine) acts in microorganisms as an osmotic counterweight against halostress and has attracted commercial attention as a protecting agent. Its production and application are restricted by the drawbacks of the discontinuous harvesting procedure involving salt shocks, which reduces volumetric yield, increases reactor corrosion, and complicates downstream processing. In order to synthesize ectoine continuously in less-aggressive media, we introduced the ectoine genes ectABC of the halophilic bacterium Chromohalobacter salexigens into an Escherichia coli strain using the expression vector pASK-IBA7. Under the control of a tet promoter, the transgenic E. coli synthesized 6 g liter−1 ectoine with a space-time yield of 40 mg liter−1 h−1, with the vast majority of the ectoine being excreted.  相似文献   

4.
Ectoine, a cyclic tetrahydropyrimidine (2-methyl-1,4,5,6-tetrahydropyrimidine-4-carboxylic acid), is a natural compound, which serves as a protective substance in many bacterial cells. In this study, the putative ectABC gene cluster from Bacillus halodurans was heterologously expressed in E. coli and the production of ectoine was confirmed by HPLC analysis. The activity of the enzymes coded by the ectA, B and C genes were found to be higher in induced transgenic cells compared to the uninduced cells. Phylogenetic analysis revealed sequence identities ranging from 36–73% for ectA gene, 55–81% for ectB gene and 55–80% for ectC gene indicating that the enzymes are evolutionarily well conserved.  相似文献   

5.
Polyhydroxyalkanoates (PHAs) are microbial polyesters that can be used as completely biodegradable polymers, but the high production cost prevents their use in a wide range of applications. Recombinant Escherichia coli strains harboring the Ralstonia eutropha PHA biosynthesis genes have been reported to have several advantages as PHA producers compared with wild-type PHA-producing bacteria. However, the PHA productivity (amount of PHA produced per unit volume per unit time) obtained with these recombinant E. coli strains has been lower than that obtained with the wild-type bacterium Alcaligenes latus. To endow the potentially superior PHA biosynthetic machinery to E. coli, we cloned the PHA biosynthesis genes from A. latus. The three PHA biosynthesis genes formed an operon with the order PHA synthase, β-ketothiolase, and reductase genes and were constitutively expressed from the natural promoter in E. coli. Recombinant E. coli strains harboring the A. latus PHA biosynthesis genes accumulated poly(3-hydroxybutyrate) (PHB), a model PHA product, more efficiently than those harboring the R. eutropha genes. With a pH-stat fed-batch culture of recombinant E. coli harboring a stable plasmid containing the A. latus PHA biosynthesis genes, final cell and PHB concentrations of 194.1 and 141.6 g/liter, respectively, were obtained, resulting in a high productivity of 4.63 g of PHB/liter/h. This improvement should allow recombinant E. coli to be used for the production of PHB with a high level of economic competitiveness.  相似文献   

6.
Strain CHR63 is a salt-sensitive mutant of the moderately halophilic wild-type strain Halomonas elongata DSM 3043 that is affected in the ectoine synthase gene (ectC). This strain accumulates large amounts of Nγ-acetyldiaminobutyrate (NADA), the precursor of ectoine (D. Cánovas, C. Vargas, F. Iglesias-Guerra, L. N. Csonka, D. Rhodes, A. Ventosa, and J. J. Nieto, J. Biol. Chem. 272:25794–25801, 1997). Hydroxyectoine, ectoine, and glucosylglycerate were also identified by nuclear magnetic resonance (NMR) as cytoplasmic organic solutes in this mutant. Accumulation of NADA, hydroxyectoine, and ectoine was osmoregulated, whereas the levels of glucosylglycerate decreased at higher salinities. The effect of the growth stage on the accumulation of solutes was also investigated. NADA was purified from strain CHR63 and was shown to protect the thermolabile enzyme rabbit muscle lactate dehydrogenase against thermal inactivation. The stabilizing effect of NADA was greater than the stabilizing effect of ectoine or potassium diaminobutyrate. A 1H NMR analysis of the solutes accumulated by the wild-type strain and mutants CHR62 (ectA::Tn1732) and CHR63 (ectC::Tn1732) indicated that H. elongata can synthesize hydroxyectoine by two different pathways—directly from ectoine or via an alternative pathway that converts NADA into hydroxyectoine without the involvement of ectoine.  相似文献   

7.
An open reading frame encoding the ectoine biosynthesis genes was cloned from the Bacillus halodurans genome. An expression plasmid containing the operon was introduced into Escherichia coli cells, and the recombinant ectoine was quantified. The secondary structure of ectoine biosynthesis proteins were predicted and was quite similar to that of reported proteins from eubacteria.  相似文献   

8.
Pyrroloquinoline quinone (PQQ) is a versatile quinone cofactor participating in numerous biological processes. Klebsiella pneumoniae can naturally synthesize PQQ for harboring intact PQQ synthesis genes. Previous metabolic engineering of K. pneumoniae failed to overproduce PQQ due to the employment of strong promoter in expression vector. Here we report that a moderate rather than strong promoter is efficient for PQQ production. To screen an appropriate promoter, a total of four distinct promoters—lac promoter, pk promoter of glycerol dehydratase gene (dhaB1), promoter of kanamycin resistance gene, and T7 promoter (as the control)—were individually used for overexpressing the endogenous PQQ genes in K. pneumoniae along with heterologous expression in Escherichia coli. We found that all recombinant K. pneumoniae strains produced more PQQ than recombinant E. coli strains that carried corresponding vectors, indicating that K. pneumoniae is superior to E. coli for the production of PQQ. Particularly, the recombinant K. pneumoniae recruiting the promoter of kanamycin resistance gene produced the highest PQQ (1,700 nmol), revealing that a moderate rather than strong promoter is efficient for PQQ production. Furthermore, PQQ production was roughly proportional to glucose concentration increasing from 0.5 to 1.5 g/L, implying the synergism between PQQ biosynthesis and glucose utilization. This study not only provides a feasible strategy for production of PQQ in K. pneumoniae, but also reveals the exquisite synchronization among PQQ biosynthesis, glucose metabolism, and cell proliferation.  相似文献   

9.
We previously reported that the SbROMT3syn recombinant protein catalyzes the production of the methylated resveratrol derivatives pinostilbene and pterostilbene by methylating substrate resveratrol in recombinant E. coli. To further study the production of stilbene compounds in E. coli by the expression of enzymes involved in stilbene biosynthesis, we isolated three stilbene synthase (STS) genes from rhubarb, peanut, and grape as well as two resveratrol O-methyltransferase (ROMT) genes from grape and sorghum. The ability of RpSTS to produce resveratrol in recombinant E. coli was compared with other AhSTS and VrSTS genes. Out of three STS, only AhSTS was able to produce resveratrol from p-coumaric acid. Thus, to improve the solubility of RpSTS, VrROMT, and SbROMT3 in E. coli, we synthesized the RpSTS, VrROMT and SbROMT3 genes following codon-optimization and expressed one or both genes together with the cinnamate/4-coumarate:coenzyme A ligase (CCL) gene from Streptomyces coelicolor. Our HPLC and LC-MS analyses showed that recombinant E. coli expressing both ScCCL and RpSTSsyn led to the production of resveratrol when p-coumaric acid was used as the precursor. In addition, incorporation of SbROMT3syn in recombinant E. coli cells produced resveratrol and its mono-methylated derivative, pinostilbene, as the major products from p-coumaric acid. However, very small amounts of pterostilbene were only detectable in the recombinant E. coli cells expressing the ScCCL, RpSTSsyn and SbROMT3syn genes. These results suggest that RpSTSsyn exhibits an enhanced enzyme activity to produce resveratrol and SbROMT3syn catalyzes the methylation of resveratrol to produce pinostilbene in E. coli cells.  相似文献   

10.
The sulfatase family involves a group of enzymes with a large degree of similarity. Until now, sixteen human sulfatases have been identified, most of them found in lysosomes. Human deficiency of sulfatases generates various genetic disorders characterized by abnormal accumulation of sulfated intermediate compounds. Mucopolysaccharidosis type II is characterized by the deficiency of iduronate 2-sulfate sulfatase (IDS), causing the lysosomal accumulation of heparan and dermatan sulfates. Currently, there are several cases of genetic diseases treated with enzyme replacement therapy, which have generated a great interest in the development of systems for recombinant protein expression. In this work we expressed the human recombinant IDS-Like enzyme (hrIDS-Like) in Escherichia coli DH5α. The enzyme concentration revealed by ELISA varied from 78.13 to 94.35 ng/ml and the specific activity varied from 34.20 to 25.97 nmol/h/mg. Western blotting done after affinity chromatography purification showed a single band of approximately 40 kDa, which was recognized by an IgY polyclonal antibody that was developed against the specific peptide of the native protein. Our 100 ml-shake-flask assays allowed us to improve the enzyme activity seven fold, compared to the E. coli JM109/pUC13-hrIDS-Like system. Additionally, the results obtained in the present study were equal to those obtained with the Pichia pastoris GS1115/pPIC-9-hrIDS-Like system (3 L bioreactor scale). The system used in this work (E. coli DH5α/pGEX-3X-hrIDS-Like) emerges as a strategy for improving protein expression and purification, aimed at recombinant protein chemical characterization, future laboratory assays for enzyme replacement therapy, and as new evidence of active putative sulfatase production in E. coli.  相似文献   

11.
Five strains of Enterobacter cloacae that are biological control agents of Pythium damping-off diseases produced the hydroxamate siderophore aerobactin under iron-limiting conditions. Genes determining aerobactin biosynthesis of the biocontrol strain E. cloacae EcCT-501 were localized to a 12.3-kb region, which conferred aerobactin production to Escherichia coli DH5α. The aerobactin biosynthesis genes of E. cloacae hybridized to those of the pColV-K30 plasmid of E. coli, but restriction patterns of the aerobactin regions of pColV-K30 and E. cloacae differed. A derivative strain with a deletion in the aerobactin biosynthesis locus was as effective as strain EcCT-501 in biological control of Pythium damping-off of cucumber. Thus, aerobactin production did not contribute significantly to the biological control activity of EcCT-501 under the conditions of this study.  相似文献   

12.
13.
Three Escherichia coli strains, two recA strains (DH1 and YK537) and one recA+ strain (KS476) harboring human proapo A-I expression plasmid pUS(pAI), were cultivated in fed-batch mode using a synthetic medium and the amounts of human proapo A-I accumulation were compared under various cultivation conditions. In the expression plasmid, nine proapo A-I genes were tandemly ligated downstream of the tac promoter. Experimental results indicated that selection of the host strain and cultivation temperature was important. Among the three E. coli strains checked, strain DH1 yielded the most effective production of human proapo A-I at 30°C.  相似文献   

14.
Mammalian cytochrome P450 enzymes are of special interest as biocatalysts for fine chemical and drug metabolite synthesis. In this study, the potential of different recombinant microorganisms expressing rat and human cyp1a1 genes is evaluated for such applications. The maximum specific activity for 7-ethoxyresorufin O-deethylation and gene expression levels were used as parameters to judge biocatalyst performance. Under comparable conditions, E. coli is shown to be superior over the use of S. cerevisiae and P. putida as hosts for biocatalysis. Of all tested E. coli strains, E. coli DH5α and E. coli JM101 harboring rat CYP1A1 showed the highest activities (0.43 and 0.42 U gCDW−1, respectively). Detection of active CYP1A1 in cell-free E. coli extracts was found to be difficult and only for E. coli DH5α, expression levels could be determined (41 nmol gCDW−1). The presented results show that efficient expression of mammalian cyp1a1 genes in recombinant microorganisms is troublesome and host-dependent and that enhancing expression levels is crucial in order to obtain more efficient biocatalysts. Specific activities currently obtained are not sufficient yet for fine chemical production, but are sufficient for preparative-scale drug metabolite synthesis.  相似文献   

15.
Edwardsiella tarda and Streptococcus iniae are important aquaculture pathogens that affect many species of farmed fish. In this study, we analyzed the expression, activity, and immunoprotective potential of E. tarda heat shock protein DnaK. We found that dnaK expression was upregulated under conditions of heat shock, oxidative stress, and infection of host cells. Recombinant DnaK (rDnaK) purified from Escherichia coli exhibited ATPase activity and induced protection in Japanese flounder (Paralichthys olivaceus) against lethal E. tarda challenge. On the basis of these results and our previous observation that a protective S. iniae antigen Sia10 which, when expressed heterogeneously in E. coli DH5α, is secreted into the extracellular milieu, we constructed a chimeric antigen by fusing DnaK to Sia10. The resulting fusion protein Sia10-DnaK was expressed in DH5α via the plasmid pTDK. Western blot analysis indicated that Sia10-DnaK was detected in the culture supernatant of DH5α/pTDK. When flounder were vaccinated with live DH5α/pTDK, strong protection was observed against both E. tarda and S. iniae. ELISA analysis detected specific serum antibody production in fish vaccinated with rDnaK and DH5α/pTDK. Taken together, these results indicate that rDnaK is an intrinsic ATPase with immunoprotective property and that Sia10-DnaK delivered by a live bacterial host is an effective bivalent vaccine candidate against E. tarda and S. iniae infection.  相似文献   

16.
Polyhydroxyalkanoates (PHAs) are biologically produced polyesters that have potential application as biodegradable plastics. Especially important are the short-chain-length-medium-chain-length (SCL-MCL) PHA copolymers, which have properties ranging from thermoplastic to elastomeric, depending on the ratio of SCL to MCL monomers incorporated into the copolymer. Because of the potential wide range of applications for SCL-MCL PHA copolymers, it is important to develop and characterize metabolic pathways for SCL-MCL PHA production. In previous studies, coexpression of PHA synthase genes and the 3-ketoacyl-acyl carrier protein reductase gene (fabG) in recombinant Escherichia coli has been shown to enhance PHA production from related carbon sources such as fatty acids. In this study, a new fabG gene from Pseudomonas sp. 61-3 was cloned and its gene product characterized. Results indicate that the Pseudomonas sp. 61-3 and E. coli FabG proteins have different substrate specificities in vitro. The current study also presents the first evidence that coexpression of fabG genes from either E. coli or Pseudomonas sp. 61-3 with fabH(F87T) and PHA synthase genes can enhance the production of SCL-MCL PHA copolymers from nonrelated carbon sources. Differences in the substrate specificities of the FabG proteins were reflected in the monomer composition of the polymers produced by recombinant E. coli. SCL-MCL PHA copolymer isolated from a recombinant E. coli strain had improved physical properties compared to the SCL homopolymer poly-3-hydroxybutyrate. This study defines a pathway to produce SCL-MCL PHA copolymer from the fatty acid biosynthesis that may impact on PHA production in recombinant organisms.  相似文献   

17.
18.

Objectives

To evaluate the combination of a culture medium employing glucoamylase-mediated glucose reléase from a gluco-polysaccharide and an E. coli strain engineered in its glucose transport system for improving plasmid DNA (pDNA) production.

Results

The production of pDNA was tested using E. coli DH5α grown in shake-flasks and the recently developed VH33 Δ(recA deoR)-engineered strain, which utilizes glucose more efficiently than wild type strains. Three glucoamylase concentrations for releasing glucose from the polysaccharide carbon source were used: 1, 2 and 3 U l?1. Both strains reached similar cell densities ranging from 5 to 8.8 g l?1 under the different conditions. The highest pDNA yields on biomass (YpDNA/X) for both strains were obtained when 3 U enzyme l?1were used. Under these conditions, 35 ± 3 mgof pDNA l?1 were produced by DH5α after 24 h of culture. Under the same conditions, the engineered strain produced 66 ± 1 mgpDNAl?1 after 20 h. pDNA supercoiled fractionswere close to 80 % for both strains.

Conclusions

The pDNA concentration achieved by the engineered E. coli was 89 % higher than that of DH5α. The combination of the engineered strain and enzyme-controlled glucose release is an attractive alternative for pDNA production in shake-flasks.
  相似文献   

19.
20.
Occurrence of feruloyl-CoA synthetase (fcs) and enoyl-CoA hydratase (ech) genes responsible for the bioconversion of ferulic acid to vanillin have been reported and characterized from Amycolatopsis sp., Streptomyces sp., and Pseudomonas sp. Attempts have been made to express these genes in Escherichia coli DH5α, E. coli JM109, and Pseudomonas fluorescens. However, none of the lactic acid bacteria strain having GRAS status was previously proposed for heterologous expression of fcs and ech genes for production of vanillin through biotechnological process. Present study reports heterologous expression of vanillin synthetic gene cassette bearing fcs and ech genes in a dairy isolate Pediococcus acidilactici BD16. After metabolic engineering, statistical optimization of process parameters that influence ferulic acid to vanillin biotransformation in the recombinant strain was carried out using central composite design of response surface methodology. After scale-up of the process, 3.14 mM vanillin was recovered from 1.08 mM ferulic acid per milligram of recombinant cell biomass within 20 min of biotransformation. From LCMS-ESI spectral analysis, a metabolic pathway of phenolic biotransformations was predicted in the recombinant P. acidilactici BD16 (fcs +/ech +).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号