首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new computer program (CORE) is described that predicts core hydrophobic sequences of predetermined target protein structures. A novel scoring function is employed, which for the first time incorporates parameters directly correlated to free energies of unfolding (deltaGu), melting temperatures (Tm), and cooperativity. Metropolis-driven simulated annealing and low-temperature Monte Carlo sampling are used to optimize this score, generating sequences predicted to yield uniquely folded, stable proteins with cooperative unfolding transitions. The hydrophobic core residues of four natural proteins were predicted using CORE with the backbone structure and solvent exposed residues as input. In the two smaller proteins tested (Gbeta1, 11 core amino acids; 434 cro, 10 core amino acids), the native sequence was regenerated as well as the sequence of known thermally stable variants that exhibit cooperative denaturation transitions. Previously designed sequences of variants with lower thermal stability and weaker cooperativity were not predicted. In the two larger proteins tested (myoglobin, 32 core amino acids; methionine aminopeptidase, 63 core amino acids), sequences with corresponding side-chain conformations remarkably similar to that of native were predicted.  相似文献   

2.
Hidetoshi Kono  Junta Doi 《Proteins》1994,19(3):244-255
Globular proteins have high packing densities as a result of residue side chains in the core achieving a tight, complementary packing. The internal packing is considered the main determinant of native protein structure. From that point of view, we present here a method of energy minimization using an automata network to predict a set of amino acid sequences and their side-chain conformations from a desired backbone geometry for de novo design of proteins. Using discrete side-chain conformations, that is, rotamers, the sequence generation problem from a given backbone geometry becomes one of combinatorial problems. We focused on the residues composing the interior core region and predicted a set of amino acid Sequences and their side-chain conformations only from a given backbone geometry. The kinds of residues were restricted to six hydrophobic amino acids (Ala, Ile, Met, Leu, Phe, and Val) because the core regions are almost always composed of hydrophobic residues. The obtained sequences were well packed as was the native sequence. The method can be used for automated sequence generation in the de novo design of proteins. © 1994 Wiley-Liss, Inc.  相似文献   

3.
Protein-DNA interactions are crucial for many biological processes. Attempts to model these interactions have generally taken the form of amino acid-base recognition codes or purely sequence-based profile methods, which depend on the availability of extensive sequence and structural information for specific structural families, neglect side-chain conformational variability, and lack generality beyond the structural family used to train the model. Here, we take advantage of recent advances in rotamer-based protein design and the large number of structurally characterized protein-DNA complexes to develop and parameterize a simple physical model for protein-DNA interactions. The model shows considerable promise for redesigning amino acids at protein-DNA interfaces, as design calculations recover the amino acid residue identities and conformations at these interfaces with accuracies comparable to sequence recovery in globular proteins. The model shows promise also for predicting DNA-binding specificity for fixed protein sequences: native DNA sequences are selected correctly from pools of competing DNA substrates; however, incorporation of backbone movement will likely be required to improve performance in homology modeling applications. Interestingly, optimization of zinc finger protein amino acid sequences for high-affinity binding to specific DNA sequences results in proteins with little or no predicted specificity, suggesting that naturally occurring DNA-binding proteins are optimized for specificity rather than affinity. When combined with algorithms that optimize specificity directly, the simple computational model developed here should be useful for the engineering of proteins with novel DNA-binding specificities.  相似文献   

4.
It is widely believed that the dominant force opposing protein folding is the entropic cost of restricting internal rotations. The energetic changes from restricting side-chain torsional motion are more complex than simply a loss of conformational entropy, however. A second force opposing protein folding arises when a side-chain in the folded state is not in its lowest-energy rotamer, giving rotameric strain. chi strain energy results from a dihedral angle being shifted from the most stable conformation of a rotamer when a protein folds. We calculated the energy of a side-chain as a function of its dihedral angles in a poly(Ala) helix. Using these energy profiles, we quantify conformational entropy, rotameric strain energy and chi strain energy for all 17 amino acid residues with side-chains in alpha-helices. We can calculate these terms for any amino acid in a helix interior in a protein, as a function of its side-chain dihedral angles, and have implemented this algorithm on a web page. The mean change in rotameric strain energy on folding is 0.42 kcal mol-1 per residue and the mean chi strain energy is 0.64 kcal mol-1 per residue. Loss of conformational entropy opposes folding by a mean of 1.1 kcal mol-1 per residue, and the mean total force opposing restricting a side-chain into a helix is 2.2 kcal mol-1. Conformational entropy estimates alone therefore greatly underestimate the forces opposing protein folding. The introduction of strain when a protein folds should not be neglected when attempting to quantify the balance of forces affecting protein stability. Consideration of rotameric strain energy may help the use of rotamer libraries in protein design and rationalise the effects of mutations where side-chain conformations change.  相似文献   

5.
Various theoretical concepts, such as free energy potentials, electrostatic interaction potentials, atomic packing, solvent-exposed surface, and surface charge distribution, were tested for their ability to discriminate between native proteins and misfolded protein models. Misfolded models were constructed by introducing incorrect side chains onto polypeptide backbones: side chains of the alpha-helical hemerythrin were modeled on the beta-sheeted backbone of immunoglobulin VL domain, whereas those of the VL domain were similarly modeled on the hemerythrin backbone. CONGEN, a conformational space sampling program, was used to construct the side chains, in contrast to the previous work, where incorrect side chains were modeled in all trans conformations. Capability of the conformational search procedure to reproduce native conformations was gauged first by rebuilding (the correct) side chains in hemerythrin and the VL domain: constructs with r.m.s. differences from the x-ray side chains 2.2-2.4 A were produced, and many calculated conformations matched the native ones quite well. Incorrectly folded models were then constructed by the same conformational protocol applied to incorrect amino acid sequences. All CONGEN constructs, both correctly and incorrectly folded, were characterized by exceptionally small molecular surfaces and low potential energies. Surface charge density, atomic packing, and Coulomb formula-based electrostatic interactions of the misfolded structures and the correctly folded proteins were similar, and therefore of little interest for diagnosing incorrect folds. The following criteria clearly favored the native structures over the misfolded ones: 1) solvent-exposed side-chain nonpolar surface, 2) number of buried ionizable groups, and 3) empirical free energy functions that incorporate solvent effects.  相似文献   

6.
A new model for calculating the solvation energy of proteins is developed and tested for its ability to identify the native conformation as the global energy minimum among a group of thousands of computationally generated compact non-native conformations for a series of globular proteins. In the model (called the WZS model), solvation preferences for a set of 17 chemically derived molecular fragments of the 20 amino acids are learned by a training algorithm based on maximizing the solvation energy difference between native and non-native conformations for a training set of proteins. The performance of the WZS model confirms the success of this learning approach; the WZS model misrecognizes (as more stable than native) only 7 of 8,200 non-native structures. Possible applications of this model to the prediction of protein structure from sequence are discussed.  相似文献   

7.
Combinatorial sequence optimization for protein design requires libraries of discrete side-chain conformations. The discreteness of these libraries is problematic, particularly for long, polar side chains, since favorable interactions can be missed. Previously, an approach to loop remodeling where protein backbone movement is directed by side-chain rotamers predicted to form interactions previously observed in native complexes (termed "motifs") was described. Here, we show how such motif libraries can be incorporated into combinatorial sequence optimization protocols and improve native complex recapitulation. Guided by the motif rotamer searches, we made improvements to the underlying energy function, increasing recapitulation of native interactions. To further test the methods, we carried out a comprehensive experimental scan of amino acid preferences in the I-AniI protein-DNA interface and found that many positions tolerated multiple amino acids. This sequence plasticity is not observed in the computational results because of the fixed-backbone approximation of the model. We improved modeling of this diversity by introducing DNA flexibility and reducing the convergence of the simulated annealing algorithm that drives the design process. In addition to serving as a benchmark, this extensive experimental data set provides insight into the types of interactions essential to maintain the function of this potential gene therapy reagent.  相似文献   

8.
9.
Straight-chain non-polar amino acids are good helix-formers in water   总被引:6,自引:0,他引:6  
For comparison with earlier data on naturally occurring non-polar amino acids (Ala, Leu, Phe, Val, Ile), the comparative helix-forming tendencies have been measured for non-polar amino acid residues that have unbranched side-chains, with an ethyl, propyl or butyl group, and also for methionine. The substitutions are made in a 17-residue alanine-based peptide. The results show that straight-chain non-polar amino acids have high helix-forming tendencies compared to beta-branched non-polar amino acids. Restriction of side-chain conformations in the helix, with a corresponding reduction in conformational entropy, is the likely explanation. There is a small increase in helix-forming tendency as the side-chain increases in length from ethyl to butyl, which suggests that a helix-stabilizing hydrophobic interaction is being detected.  相似文献   

10.
Yan S  Wu G 《Proteins》2012,80(3):764-773
Misgurin is an antimicrobial peptide from the loach, while the hydrophobic-polar (HP) model is a way to study the folding conformations and native states in peptide and protein although several amino acids cannot be classified either hydrophobic or polar. Practically, the HP model requires extremely intensive computations, thus it has yet to be used widely. In this study, we use the two-dimensional HP model to analyze all possible folding conformations and native states of misgurin with conversion of natural amino acids according to the normalized amino acid hydrophobicity index as well as the shortest benchmark HP sequence. The results show that the conversion of misgurin into HP sequence with glycine as hydrophobic amino acid at pH 2 has 1212 folding conformations with the same native state of minimal energy -6; the conversion of glycine as polar amino acid at pH 2 has 13,386 folding conformations with three native states of minimal energy -5; the conversion of glycine as hydrophobic amino acid at pH 7 has 2538 folding conformations with three native states of minimal energy -5; and the conversion of glycine as polar amino acid at pH 7 has 12,852 folding conformations with three native states of minimal energy -4. Those native states can be ranked according to the normalized amino acid hydrophobicity index. The detailed discussions suggest two ways to modify misgurin.  相似文献   

11.
Interest centers here on whether the use of a fixed charge distribution of a protein solute, or a treatment that considers proton-binding equilibria by solving the Poisson equation, is a better approach to discriminate native from non-native conformations of proteins. In this analysis of the charge distribution of 7 proteins, we estimate the solvation free energy contribution to the total free energy by exploring the 2(zeta) possible ionization states of the whole molecule, with zeta being the number of ionizable groups in the amino acid sequence, for every conformation in the ensembles of 7 proteins. As an additional consideration of the role of electrostatic interactions in determining the charge distribution of native folds, we carried out a comparison of alternative charge assignment models for the ionizable residues in a set of 21 native-like proteins. The results of this work indicate that (1) for 6 out of 7 proteins, estimation of solvent polarization based on the Generalized Born model with a fixed charge distribution provides the optimal trade-off between accuracy, with respect to the Poisson equation, and speed when compared to the accessible surface area model; for the seventh protein, consideration of all possible ionization states of the whole molecule appears to be crucial to discriminate the native from non-native conformations; (2) significant differences in the degree of ionization and hence the charge distribution for native folds are found between the different charge models examined; (3) the stability of the native state is determined by a delicate balance of all the energy components, and (4) conformational entropy, and hence the dynamics of folding, may play a crucial role for a successful ab initio protein folding prediction.  相似文献   

12.
The conformations of 23 terminally blocked dipeptide sequences were examined by conformational energy calculations that included the effects of the aqueous solvent. Starting structures were derived from combinations of minimum-energy conformations of hydrated single residues. Their conformational energies were then minimized using the ECEPP potential (Empirical Conformational Energy Program for Peptides) with hydration included. Short-range interactions dominate in stabilizing the conformations of the hydrated dipeptides. Differences between conformational stabilities of hydrated and unhydrated dipeptides in many cases are due to the competition of solute–water and intramolecular hydrogen bonds. In other cases, perturbation of the hydration shell of the solute by close approach of solute atoms alters conformational preferences. Probabilities of formation of bends were calculated and compared to the corresponding quantities for unhydrated dipeptides and to those calculated from x-ray structures. For bends in dipeptides containing two nonpolar amino acids, computations omitting hydration yield better results. However, better agreement with experimental (x-ray) bend probabilities for dipeptides containing glycine or polar amino acids is obtained only in some sequences when hydration is included. The results are rationalized by the observation that, in proteins, bends containing nonpolar sequences occur on the inside, shielded from the solvent. Bends containing glycine or polar amino acids occur frequently on the surface of the protein, but they are not completely hydrated.  相似文献   

13.
Folding of polypeptide chains induced by the amino acid side-chains   总被引:5,自引:0,他引:5  
Conformational calculations with the use of semi-empirical potential functions have been applied to the analysis of the folding of peptide chains. In particular, the part played by the amino acid side-chains in the adoption of folded conformations has been investigated.The results show that the preferred conformations of short peptides are mostly extended ones. However, from a given peptide chain-length, the side-chain to backbone and side-chain to side-chain interactions become strong enough so that definite sequences of amino acids can induce a transition from extended to folded conformations. We propose to call these folded structures “conformational nuclei”. The type of “nucleus” formed is dependent on both the amino acid composition and the sequence.Our results strongly support the hypothesis that folding of polypeptide chains can occur through a nucleation process that could be induced by the side-chains.  相似文献   

14.
Combinatorial experiments provide new ways to probe the determinants of protein folding and to identify novel folding amino acid sequences. These types of experiments, however, are complicated both by enormous conformational complexity and by large numbers of possible sequences. Therefore, a quantitative computational theory would be helpful in designing and interpreting these types of experiment. Here, we present and apply a statistically based, computational approach for identifying the properties of sequences compatible with a given main-chain structure. Protein side-chain conformations are included in an atom-based fashion. Calculations are performed for a variety of similar backbone structures to identify sequence properties that are robust with respect to minor changes in main-chain structure. Rather than specific sequences, the method yields the likelihood of each of the amino acids at preselected positions in a given protein structure. The theory may be used to quantify the characteristics of sequence space for a chosen structure without explicitly tabulating sequences. To account for hydrophobic effects, we introduce an environmental energy that it is consistent with other simple hydrophobicity scales and show that it is effective for side-chain modeling. We apply the method to calculate the identity probabilities of selected positions of the immunoglobulin light chain-binding domain of protein L, for which many variant folding sequences are available. The calculations compare favorably with the experimentally observed identity probabilities.  相似文献   

15.
Tran HT  Wang X  Pappu RV 《Biochemistry》2005,44(34):11369-11380
Radii of gyration of denatured proteins vary with chain length and are insensitive to details of amino acid sequence. Observations of sequence independence in polymeric properties conflict with results from spectroscopic experiments, which suggest the presence of sequence-specific residual structure in denatured states. Can we reconcile the two apparently conflicting sets of observations? To answer this question, we need knowledge of the ensemble of conformations accessible to proteins in good solvents. The excluded-volume limit provides an ideal mimic of polymers in good solvents. Therefore, we attempt to solve the "reconciliation problem" by simulating conformational ensembles accessible to peptides and proteins in the excluded-volume limit. Analysis of these ensembles for a variety of polypeptide sequences leads to results that are consistent with experimental observations of sequence-specific conformational preferences in short peptides and the scaling behavior of polymeric quantities for denatured proteins. Reconciliation in the excluded-volume limit comes about due to a tug of war between two factors, namely, minimization of steric overlap and the competing effects of conformational entropy. Minimization of steric overlap promotes chain stretching and leads to experimentally observed sequence-dependent preferences for locally extended segments such as polyproline II helices, beta-strands, and very short stretches of alpha-helix. Conformational entropy opposes chain stretching, and the calculated persistence length for sequence-dependent conformational preferences is less than five amino acids. This estimate does not vary with amino acid sequence. The short persistence lengths lead directly to experimental observations of generic sequence-independent behavior of radii of gyration for denatured proteins.  相似文献   

16.
Optimizing amino acid conformation and identity is a central problem in computational protein design. Protein design algorithms must allow realistic protein flexibility to occur during this optimization, or they may fail to find the best sequence with the lowest energy. Most design algorithms implement side-chain flexibility by allowing the side chains to move between a small set of discrete, low-energy states, which we call rigid rotamers. In this work we show that allowing continuous side-chain flexibility (which we call continuous rotamers) greatly improves protein flexibility modeling. We present a large-scale study that compares the sequences and best energy conformations in 69 protein-core redesigns using a rigid-rotamer model versus a continuous-rotamer model. We show that in nearly all of our redesigns the sequence found by the continuous-rotamer model is different and has a lower energy than the one found by the rigid-rotamer model. Moreover, the sequences found by the continuous-rotamer model are more similar to the native sequences. We then show that the seemingly easy solution of sampling more rigid rotamers within the continuous region is not a practical alternative to a continuous-rotamer model: at computationally feasible resolutions, using more rigid rotamers was never better than a continuous-rotamer model and almost always resulted in higher energies. Finally, we present a new protein design algorithm based on the dead-end elimination (DEE) algorithm, which we call iMinDEE, that makes the use of continuous rotamers feasible in larger systems. iMinDEE guarantees finding the optimal answer while pruning the search space with close to the same efficiency of DEE. Availability: Software is available under the Lesser GNU Public License v3. Contact the authors for source code.  相似文献   

17.
A free energy function, combining molecular mechanics energy with empirical solvation and entropic terms, is used for ranking near-native conformations that occur in the conformational search steps of homology modeling, i.e., side-chain search and loop closure calculations. Correlations between the free energy and RMS deviation from the X-ray structure are established. It is shown that generally both molecular mechanics and solvation/entropic terms should be included in the potential. The identification of near-native backbone conformations is accomplished primarily by the molecular mechanics term that becomes the dominant contribution to the free energy if the backbone is even slightly strained, as frequently occurs in loop closure calculations. Both terms become equally important if a sufficiently accurate backbone conformation is found. Finally, the selection of the best side-chain positions for a fixed backbone is almost completely governed by the solvation term. The discriminatory power of the combined potential is demonstrated by evaluating the free energies of protein models submitted to the first meeting on Critical Assessment of techniques for protein Structure Prediction (CASP1), and comparing them to the free energies of the native conformations.  相似文献   

18.
19.
Modeling the effects of mutations on the denatured states of proteins.   总被引:19,自引:7,他引:12       下载免费PDF全文
We develop a model for the reversible denaturation of proteins and for the effects of single-site mutations on the denatured states. The model is based on short chains of sequences of H (hydrophobic) and P (other) monomers configured as self-avoiding walks on the two-dimensional square lattice. The N (native) state is defined as the unique conformation of lowest contact energy, whereas the D (denatured) state is defined as the collection of all other conformations. With this model we are able to determine the exact partition function, and thus the exact native-denatured equilibrium for various solvent conditions, using the computer to exhaustively enumerate every possible configuration. Previous studies confirm that this model shows many aspects of protein-like behavior. The present study attempts to model how the denatured state (1) depends on the amino acid sequence, and (2) is changed by single-site mutations. The model accounts for two puzzling experimental results: (1) the replacement of a polar residue by a hydrophobic amino acid on the surface of a protein can destabilize a native protein, and (2) the "denaturant slope," m = partial delta G/partial c (where c is the concentration of denaturant--urea, guanidine hydrochloride), can sometimes change by as much as 30% due to a single mutation. The principal conclusion of the present study is that, under strong folding conditions, the denatured conformations that are in equilibrium with the native state are not open random configurations. Instead, they are an ensemble of highly compact conformations with a distribution that depends on the residue sequence and that can be substantially altered by single mutations. Most importantly, we conclude that mutations can exert their dominant effects on protein stability by changing the entropy of folding.  相似文献   

20.
We show that long- and short-range interactions in almost all protein native structures are actually consistent with each other for coarse-grained energy scales; specifically we mean the long-range inter-residue contact energies and the short-range secondary structure energies based on peptide dihedral angles, which are potentials of mean force evaluated from residue distributions observed in protein native structures. This consistency is observed at equilibrium in sequence space rather than in conformational space. Statistical ensembles of sequences are generated by exchanging residues for each of 797 protein native structures with the Metropolis method. It is shown that adding the other category of interaction to either the short- or long-range interactions decreases the means and variances of those energies for essentially all protein native structures, indicating that both interactions consistently work by more-or-less restricting sequence spaces available to one of the interactions. In addition to this consistency, independence by these interaction classes is also indicated by the fact that there are almost no correlations between them when equilibrated using both interactions and significant but small, positive correlations at equilibrium using only one of the interactions. Evidence is provided that protein native sequences can be regarded approximately as samples from the statistical ensembles of sequences with these energy scales and that all proteins have the same effective conformational temperature. Designing protein structures and sequences to be consistent and minimally frustrated among the various interactions is a most effective way to increase protein stability and foldability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号