首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Young Xenopus tadpoles were used to test whether the pattern of discharge in specific sensory neurons can determine the motor response of a whole animal. Young Xenopus tadpoles show two main rhythmic behaviours: swimming and struggling. Touch-sensitive skin sensory neurons in the spinal cord of immobilised tadpoles were penetrated singly or in pairs using microelectrodes to allow precise control of their firing patterns. A single impulse in one Rohon-Beard neuron (= light touch) could sometimes trigger “fictive” swimming. Two to six impulses at 30–50 Hz (= a light stroke) reliably triggered fictive swimming. Neither stimulus evoked fictive struggling. Twenty-five or more impulses at 30–50 Hz (= pressure) could evoke a pattern of rhythmic bursts, distinct from swimming and suitable to drive slower, stronger movements. This pattern showed some or all the characteristics of “fictive” struggling. These results demonstrate clearly that sensory neurons can determine the pattern of motor output simply by their pattern of discharge. This provides a simple form of behavioural selection according to stimulus. Accepted: 28 November 1996  相似文献   

2.
Electrophysiological responses of olfactory receptor neurons in both male and female silkmoths (Bombyx mori) were investigated. In both sexes, the G-protein activator sodium fluoride and 1,2-dioctanoyl-sn-glycerol, a membrane-permeable analog of the protein kinase C activator diacylglycerol, elicited nerve impulse responses similar to those elicited by weak continuous stimulation with odorants. Therefore, G(q)-proteins and diacylglycerol-activated ion channels seem to be involved in the transduction process in both pheromone-sensitive neurons in males and general odorant-sensitive neurons in females. Decyl-thio-trifluoro-propanone is known to inhibit electrophysiological responses of male moths to pheromones, but has no effect in females. Application of this inhibitor reduced the frequency, but not the amplitude of elementary receptor potentials. It had no inhibitory effect on nerve impulse responses elicited by sodium fluoride or 1,2-dioctanoyl-sn-glycerol. This supports the idea that decyl-thio-trifluoro-propanone acts on a prior step of the transduction cascade, e.g. on the pheromone receptor molecules. General odorants, such as (+/-)-linalool and 1-heptanol, excite olfactory receptor neurons in females, but inhibit the pheromone-sensitive neurons in males. Both (+/-)-linalool and 1-heptanol inhibited the responses of male neurons elicited by sodium fluoride or 1,2-dioctanoyl-sn-glycerol. (+/-)-Linalool reduced the amplitude of elementary receptor potentials. In contrast to decyl-thio-trifluoro-propanone, (+/-)-linalool and 1-heptanol seem to interfere with later processes of the transduction cascade, possibly the opening of ion channels.  相似文献   

3.
Substantial progress in understanding thermal transduction in peripheral sensory nerve endings was achieved with the recent cloning of six thermally gated ion channels from the TRP (transient receptor potential) super-family. Two of these channels, TRP melastatin 8 (TRPM8) and TRP ankyrin 1 (TRPA1), are expressed in dorsal root ganglion (DRG) and trigeminal ganglion (TG) neurons, are activated by various degrees of cooling, and are candidates for mediating gentle cooling and noxious cold, respectively. However, accumulating evidence suggests that more than just these two channels are involved in cold sensing in mammals. A recent report described a critical role of the voltage-gated tetrodotoxin-resistant sodium channel Nav1.8 in perceiving intense cold and noxious stimuli at cold temperatures. Other ion channels, such as two-pore domain background potassium channels (K2P), are known to be expressed in peripheral nerves, have pronounced temperature dependence, and may contribute to cold sensing and/or cold hypersensitivity in pain states. This article reviews the evidence supporting a role for each of these channels in cold transduction, focusing on their biophysical properties, expression pattern, and modulation by pro-inflammatory mediators.  相似文献   

4.
Painful channels in sensory neurons   总被引:3,自引:0,他引:3  
Lee Y  Lee CH  Oh U 《Molecules and cells》2005,20(3):315-324
Pain is an unpleasant sensation experienced when tissues are damaged. Thus, pain sensation in some way protects body from imminent threat or injury. Peripheral sensory nerves innervated to peripheral tissues initially respond to multiple forms of noxious or strong stimuli, such as heat, mechanical and chemical stimuli. In response to these stimuli, electrical signals for conducting the nociceptive neural signals through axons are generated. These action potentials are then conveyed to specific areas in the spinal cord and in the brain. Sensory afferent fibers are heterogeneous in many aspects. For example, sensory nerves are classified as Aa, -b, -d and C-fibers according to their diameter and degree of myelination. It is widely accepted that small sensory fibers tend to respond to vigorous or noxious stimuli and related to nociception. Thus these fibers are specifically called nociceptors. Most of nociceptors respond to noxious mechanical stimuli and heat. In addition, these sensory fibers also respond to chemical stimuli [Davis et al. (1993)] such as capsaicin. Thus, nociceptors are considered polymodal. Recent advance in research on ion channels in sensory neurons reveals molecular mechanisms underlying how various types of stimuli can be transduced to neural signals transmitted to the brain for pain perception. In particular, electrophysiological studies on ion channels characterize biophysical properties of ion channels in sensory neurons. Furthermore, molecular biology leads to identification of genetic structures as well as molecular properties of ion channels in sensory neurons. These ion channels are expressed in axon terminals as well as in cell soma. When these channels are activated, inward currents or outward currents are generated, which will lead to depolarization or hyperpolarization of the membrane causing increased or decreased excitability of sensory neurons. In order to depolarize the membrane of nerve terminals, either inward currents should be generated or outward currents should be inhibited. So far, many cationic channels that are responsible for the excitation of sensory neurons are introduced recently. Activation of these channels in sensory neurons is evidently critical to the generation of nociceptive signals. The main channels responsible for inward membrane currents in nociceptors are voltage-activated sodium and calcium channels, while outward current is carried mainly by potassium ions. In addition, activation of non-selective cation channels is also responsible for the excitation of sensory neurons. Thus, excitability of neurons can be controlled by regulating expression or by modulating activity of these channels.  相似文献   

5.
The gating of ion channels by mechanical force underlies the sense of touch and pain. The mode of gating of mechanosensitive ion channels in vertebrate touch receptors is unknown. Here we show that the presence of a protein link is necessary for the gating of mechanosensitive currents in all low‐threshold mechanoreceptors and some nociceptors of the dorsal root ganglia (DRG). Using TEM, we demonstrate that a protein filament with of length ~100 nm is synthesized by sensory neurons and may link mechanosensitive ion channels in sensory neurons to the extracellular matrix. Brief treatment of sensory neurons with non‐specific and site‐specific endopeptidases destroys the protein tether and abolishes mechanosensitive currents in sensory neurons without affecting electrical excitability. Protease‐sensitive tethers are also required for touch‐receptor function in vivo. Thus, unlike the majority of nociceptors, cutaneous mechanoreceptors require a distinct protein tether to transduce mechanical stimuli.  相似文献   

6.
Touch sense     
Cutaneous mechanoreceptors are localized in the various layers of the skin where they detect a wide range of mechanical stimuli, including light brush, stretch, vibration and noxious pressure. This variety of stimuli is matched by a diverse array of specialized mechanoreceptors that respond to cutaneous deformation in a specific way and relay these stimuli to higher brain structures. Studies across mechanoreceptors and genetically tractable sensory nerve endings are beginning to uncover touch sensation mechanisms. Work in this field has provided researchers with a more thorough understanding of the circuit organization underlying the perception of touch. Novel ion channels have emerged as candidates for transduction molecules and properties of mechanically gated currents improved our understanding of the mechanisms of adaptation to tactile stimuli. This review highlights the progress made in characterizing functional properties of mechanoreceptors in hairy and glabrous skin and ion channels that detect mechanical inputs and shape mechanoreceptor adaptation.  相似文献   

7.
Cutaneous mechanoreceptors are localized in the various layers of the skin where they detect a wide range of mechanical stimuli, including light brush, stretch, vibration and noxious pressure. This variety of stimuli is matched by a diverse array of specialized mechanoreceptors that respond to cutaneous deformation in a specific way and relay these stimuli to higher brain structures. Studies across mechanoreceptors and genetically tractable sensory nerve endings are beginning to uncover touch sensation mechanisms. Work in this field has provided researchers with a more thorough understanding of the circuit organization underlying the perception of touch. Novel ion channels have emerged as candidates for transduction molecules and properties of mechanically gated currents improved our understanding of the mechanisms of adaptation to tactile stimuli. This review highlights the progress made in characterizing functional properties of mechanoreceptors in hairy and glabrous skin and ion channels that detect mechanical inputs and shape mechanoreceptor adaptation.  相似文献   

8.
An in vitro preparation of the guinea-pig cornea was used to study the effects of changing temperature on nerve terminal impulses recorded extracellularly from cold-sensitive receptors. At a stable holding temperature (31-32.5 degrees C), cold receptors had an ongoing periodic discharge of nerve terminal impulses. This activity decreased or ceased with heating and increased with cooling. Reducing the rate of temperature change reduced the respective effects of heating and cooling on nerve terminal impulse frequency. In addition to changes in the frequency of activity, nerve terminal impulse shape also changed with heating and cooling. At the same ambient temperature, nerve terminal impulses were larger in amplitude and faster in time course during heating than those recorded during cooling. The magnitude of these effects of heating and cooling on nerve terminal impulse shape was reduced if the rate of temperature change was slowed. At 29, 31.5, and 35 degrees C, a train of 50 electrical stimuli delivered to the ciliary nerves at 10-40 Hz produced a progressive increase in the amplitude of successive nerve terminal impulses evoked during the train. Therefore, it is unlikely that the reduction in nerve terminal impulse amplitude observed during cooling is due to the activity-dependent changes in the nerve terminal produced by the concomitant increase in impulse frequency. Instead, the differences in nerve terminal impulse shape observed at the same ambient temperature during heating and cooling may reflect changes in the membrane potential of the nerve terminal associated with thermal transduction.  相似文献   

9.
10.
背根神经节神经元阿片受体和离子通道的研究进展   总被引:9,自引:0,他引:9  
Wang GD  Zhao ZQ  Li CQ 《生理科学进展》1997,28(4):311-316
阿片及阿片受体与外周神经系统镇痛机制的研究,随着分子生物学技术的发展,已在受体的分子结构、形态学、分子药理学、离子通道和细胞内信号转导系统等方面取得了显著进展。μ、δ、κ阿片受体分子结构上的部分差异决定了它们各自的功能特征。三种受体在初级感觉神经元分布的比例不同,但都能介导细胞Ca^2+通道的抑制和K^+电流增加及减少。阿片受体和通道之间由多种第二信使系统偶联。分子药理学研究表明它们还存在亚型受体  相似文献   

11.
External direct coupled recordings from the neurons of the mechanosensory hairs of insects show nerve impulses and graded slow potentials in response to deformation of the hair. These slow potentials or receptor potentials are negative going, vary directly with the magnitude of the stimulus, and show no overshoot when returning to baseline. The impulses have an initial positive phase which varies in size directly with the amplitude of the receptor potential. The receptor potential is related to the generator potential for the impulse in that it must attain some critical level before impulses are produced, and the frequency of impulses varies directly with amplitude of the receptor potential. The receptor potential does not return to the baseline after each impulse. In some receptors static deformation of the hair will maintain the receptor potential. It appears likely that both the receptor potential and the variation in size of the impulses are caused by a change in conductance of the cell membrane at the receptor site, and that the receptor potential originates at a site which is not invaded by the propagated impulses.  相似文献   

12.
Some like it hot – and spicy: Chili and the capsaicin receptor TRPV1 Since many hundred years, many people like to eat chili pepper containing the pungent ingredient capsaicin that is responsible for making the food hot and spicy. Capsaicin activates transient receptor potential TRPV1 channels that are predominantly expressed in sensory neurons involved in pain sensation. TRPV1 is a noxious heat sensor and can also be activated by protons and several animal toxins. Thus, TRPV1 is a polymodal sensor of multiple noxious stimuli that cause pain. TRPV1 functions as a nocisensor that detects chemical and thermal stimuli and transduces this stimulation into sensory nerve impulses which leads to the perception of pain. Inhibition of TRPV1 reduces or abolishes pain sensation. A strong activation of TRPV1 induces a long-lasting refractory period of the pain-detecting system (desensitization) and may even lead to an irreversible loss of TRPV1-expressing sensory neurons. It still remains unclear why many people love hot and spicy food, accompanied by a burning sensation in the mouth.  相似文献   

13.
Cation channels in the DEG/ENaC family are proposed to detect cutaneous stimuli in mammals. We localized one such channel, DRASIC, in several different specialized sensory nerve endings of skin, suggesting it might participate in mechanosensation and/or acid-evoked nociception. Disrupting the mouse DRASIC gene altered sensory transduction in specific and distinct ways. Loss of DRASIC increased the sensitivity of mechanoreceptors detecting light touch, but it reduced the sensitivity of a mechanoreceptor responding to noxious pinch and decreased the response of acid- and noxious heat-sensitive nociceptors. The data suggest that DRASIC subunits participate in heteromultimeric channel complexes in sensory neurons. Moreover, in different cellular contexts, DRASIC may respond to mechanical stimuli or to low pH to mediate normal touch and pain sensation.  相似文献   

14.
Neural modification by paired sensory stimuli   总被引:1,自引:1,他引:0       下载免费PDF全文
With repetitive stimulation of two sensory pathways which are intact within the isolated nervous system of Hermissenda, features of a cellular conditioning paradigm were identified. Type A photoreceptors, unlike type B photoreceptors, produce fewer impulses in response to light following temporally specific pairing of light stimuli with rotation stimuli. Type A photoreceptor impulse wave-forms are also specifically changed by such stimulus regimens. These findings can be explained, at least in part, by increased inhibition of type A cells by type B cells after stimulus pairing.  相似文献   

15.
蜚蠊单个棘—钟形感器冲动发放的特性   总被引:2,自引:2,他引:0  
本文分析了蜚镰后胸足单个棘一钟形感器对机械位移刺激的反应模式以及冲动发放的特性.结果证明该感器是一种适应较慢的相位性触觉感受器,对触刺激有相当稳定的反应.  相似文献   

16.
To determine the chemotransduction characteristics of ventricular sensory neurites associated with nodose ganglion afferent neurons, various chemicals were applied individually to epicardial sensory neurites associated with individual afferent neurons in anesthetized guinea pigs. The following ion channel-modifying agents were tested: barium chloride, cadmium chloride, calcium chloride, the chelating agent EGTA, nickel chloride, potassium chloride, tetraethylammonium chloride, and veratridine. An acidic solution (pH 6.0) and oxygen-derived free radicals (H(2)O(2)) were tested. The following chemicals were also tested: adenosine, alpha- and beta-adrenergic agonists, angiotensin II, bradykinin, calcitonin gene-related peptide (CGRP), histamine, nicotine, the nitric oxide donor nitroprusside, substance P, and vasoactive intestinal peptide. A total of 102 cardiac afferent neurons was identified, of which approximately 66% were sensitive to mechanical stimuli applied to their epicardial sensory fields. Application of individual ion channel-modifying agents to epicardial sensory fields modified most associated afferent neurons, with barium chloride affecting each neuron studied. Ventricular sensory neurites associated with most identified neurons were also responsive to the other tested chemicals, with hydrogen peroxide, adenosine, angiotensin II, bradykinin, CGRP, clonidine, and nicotine inducing responses from at least 75% of the neurons studied. It is concluded that 1) the ventricular sensory neurites associated with nodose ganglion afferent neurons transduce a much wider variety of chemical stimuli than considered previously, 2) these sensory neurites employ a variety of membrane ion channels in their transduction processes in situ, and 3) adrenergic agents influence on sensory neurites associated with cardiac afferent neurons suggests the presence of a cardiac feedback mechanism involving local catecholamine release by adjacent sympathetic efferent postganglionic nerve terminals.  相似文献   

17.
Detection and primary processing of physical, chemical and thermal sensory stimuli by peripheral sensory nerve fibers is key to sensory perception in animals and humans. These peripheral sensory nerve fibers express a plethora of receptors and ion channel proteins which detect and initiate specific sensory stimuli. Methods are available to characterize the electrical properties of peripheral sensory nerve fibers innervating the skin, which can also be utilized to identify the functional expression of specific ion channel proteins in these fibers. However, similar electrophysiological methods are not available (and are also difficult to develop) for the detection of the functional expression of receptors and ion channel proteins in peripheral sensory nerve fibers innervating other visceral organs, including the most challenging tissues such as bone. Moreover, such electrophysiological methods cannot be utilized to determine the expression of non-excitable proteins in peripheral sensory nerve fibers. Therefore, immunostaining of peripheral/visceral tissue samples for sensory nerve fivers provides the best possible way to determine the expression of specific proteins of interest in these nerve fibers. So far, most of the protein expression studies in sensory neurons have utilized immunostaining procedures in sensory ganglia, where the information is limited to the expression of specific proteins in the cell body of specific types or subsets of sensory neurons. Here we report detailed methods/protocols for the preparation of peripheral/visceral tissue samples for immunostaining of peripheral sensory nerve fibers. We specifically detail methods for the preparation of skin or plantar punch biopsy and bone (femur) sections from mice for immunostaining of peripheral sensory nerve fibers. These methods are not only key to the qualitative determination of protein expression in peripheral sensory neurons, but also provide a quantitative assay method for determining changes in protein expression levels in specific types or subsets of sensory fibers, as well as for determining the morphological and/or anatomical changes in the number and density of sensory fibers during various pathological states. Further, these methods are not confined to the staining of only sensory nerve fibers, but can also be used for staining any types of nerve fibers in the skin, bones and other visceral tissue.  相似文献   

18.
Transient receptor potential (TRP) proteins are a family of ion channels central for sensory signaling. These receptors and, in particular, those involved in thermal sensing are also involved in pain signaling. Noteworthy, thermosensory receptors are polymodal ion channels that respond to both physical and chemical stimuli, thus integrating different environmental clues. In addition, their activity is modulated by algesic agents and lipidergic substances that are primarily released in pathological states. Lipids and lipid-like molecules have been found that can directly activate some thermosensory channels or modulate their activity by either potentiating or inhibiting it. To date, more than 50 endogenous lipids that can regulate TRP channel activity in sensory neurons have been described, thus representing the majority of known endogenous TRP channel modulators. Lipid modulators of TRP channels comprise lipids from a variety of metabolic pathways, including metabolites of the cyclooxygenase, lipoxygenase and cytochrome-P450 pathways, phospholipids and lysophospholipids. Therefore, TRP-channels are able to integrate and interpret incoming signals from the different metabolic lipid pathways. Taken together, the large number of lipids that can activate, sensitize or inhibit neuronal TRP-channels highlights the pivotal role of these molecules in sensory biology as well as in pain transduction and perception. This article is part of a Special Issue entitled: Lipid–protein interactions. Guest Editors: Amitabha Chattopadhyay and Jean-Marie Ruysschaert.  相似文献   

19.
Transduction and transmission properties of primary nociceptive afferents.   总被引:3,自引:0,他引:3  
The prototypical primary nociceptive afferent is the polymodal C-fiber nociceptor, which responds to noxious thermal, mechanical, and chemical stimuli. C-fiber nociceptors are peripheral terminals of small neurons in the dorsal root ganglia (DRG). DRG neurons must therefore supply their peripheral terminals with the molecular machinery for the encoding of noxious stimuli into trains of action potentials. The following phenomena are known for this encoding process in vivo: 1) adaptation: for a constant stimulus intensity the action potential discharge decreases slowly within 2-3 seconds, 2) fatigue: recovery from adaptation may take ten minutes or more, 3) sensitization: preceding tissue damage enhances the response, particularly to heat stimuli. Recent studies in vitro have provided important clues about the molecular mechanisms underlying these phenomena. Several membrane receptors and channels are specifically expressed in small nociceptive neurons, such as vanilloid receptors (VR1), purinergic receptors (P2X3), acid sensing ion channels (ASIC), and TTX-resistant Na-channels. In the near future, we may therefore expect major advances in our understanding of the transduction of noxious stimuli into generator potentials and transformation into trains of action potentials. Along the axon that leads from the innervated tissue to the spinal cord, primary nociceptive afferents have a limited capacity to transmit high impulse rates, suggesting a different composition of voltage-gated channels than in other primary afferents (low-threshold mechanoreceptors and thermoreceptors). Finally, the DRG neuron also supplies its central terminals with the molecular machinery for synaptic transmission and its presynaptic modulation. Progress in understanding the cellular mechanisms at both ends of the primary nociceptive neuron promises to lead to new analgesic treatment modalities for both acute and chronic pain.  相似文献   

20.
TRPA1, a member of the transient receptor potential (TRP) family of ion channels, is expressed by dorsal root ganglion neurons and by cells of the inner ear, where it has proposed roles in sensing sound, painful cold, and irritating chemicals. To test the in vivo roles of TRPA1, we generated a mouse in which the essential exons required for proper function of the Trpa1 gene were deleted. Knockout mice display behavioral deficits in response to mustard oil, to cold ( approximately 0 degrees C), and to punctate mechanical stimuli. These mice have a normal startle reflex to loud noise, a normal sense of balance, a normal auditory brainstem response, and normal transduction currents in vestibular hair cells. TRPA1 is apparently not essential for hair-cell transduction but contributes to the transduction of mechanical, cold, and chemical stimuli in nociceptor sensory neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号