首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Ponce R 《Genetica》2007,131(3):315-324
Transposable elements comprise a considerable part of eukaryotic genomes, and there is increasing evidence for their role in the evolution of genomes. The number of active transposable elements present in the host genome at any given time is probably small relative to the number of elements that no longer transpose. The elements that have lost the ability to transpose tend to evolve neutrally. For example, non-LTR retrotransposons often become 5′ truncated due to their own transposition mechanism and hence lose their ability to transpose. The resulting transposons can be characterized as “dead-on-arrival” (DOA) elements. Because they are abundant and ubiquitous, and evolve neutrally in the location where they were inserted, these DOA non-LTR elements make a useful tool to date molecular events. There are four copies of a “dead-on-arrival” RT1C element on the recently formed Sdic gene cluster of Drosophila melanogaster, that are not present in the equivalent region of the other species of the melanogaster subgroup. The life history of the RT1C elements in the genome of D. melanogaster was used to determine the insertion chronology of the elements in the cluster and to date the duplication events that originated this cluster.  相似文献   

2.
Here we analyze the molecular evolution of the β-esterase gene cluster in the Drosophila genus using the recently released genome sequences of 12 Drosophila species. Molecular evolution in this small cluster is noteworthy because it contains contrasting examples of the types and stages of loss of gene function. Specifically, missing orthologs, pseudogenes, and null alleles are all inferred. Phylogenetic analyses also suggest a minimum of 9 gene gain–loss events; however, the exact number and age of these events is confounded by interparalog recombination. A previous enigma, in which allozyme loci were mapped to β-esterase genes that lacked catalytically essential amino acids, was resolved through the identification of neighbouring genes that contain the canonical catalytic residues and thus presumably encode the mapped allozymes. The originally identified genes are evolving with selective constraint, suggesting that they have a “noncatalytic” function. Curiously, 3 of the 4 paralogous β-esterase genes in the D. ananassae genome sequence have single inactivating (frame-shift or nonsense) mutations. To determine whether these putatively inactivating mutations were fixed, we sequenced other D. ananassae alleles of these four loci. We did not find any of the 3 inactivating mutations of the sequenced strain in 12 other strains; however, other inactivating mutations were observed in the same 3 genes. This is reminiscent of the high frequency of null alleles observed in one of the β-esterase genes (Est7/EstP) of D. melanogaster. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Hsc/Hsp70-interacting protein (HIP) is a rapidly evolving Hsp70 cofactor. Analyses of multiple Drosophila species indicate that the HIP gene is duplicated only in D. melanogaster. The HIP region, in fact, contains seven distinctly evolving duplicated genes. The regional duplication occurred in two steps, fixed rapidly, and illustrates multiple modes of duplicate gene evolution. HIP and its duplicate HIP-R are adaptively evolving in a manner unique to the region: they exhibit elevated divergence from other drosophilids and low polymorphism within D. melanogaster. HIP and HIP-R are virtually identical, share polymorphisms, and are subject to gene conversion. In contrast, two other duplicate genes in the region, CG33221 and GP-CG32779, are pseudogenes, and the chimeric gene Crg1 is subject to balancing selection. HIP and HIP-R are evolving rapidly and adaptively; however, positive selection is not sufficient to explain the molecular evolution of the region as a whole. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Previous studies have shown widespread conservation of gene expression levels between species of the Drosophila melanogaster subgroup as well as a positive correlation between coding sequence divergence and expression level divergence between species. Meanwhile, large-scale misregulation of gene expression level has been described in interspecific sterile hybrids between D. melanogaster, D. simulans, D. mauritiana, and D. sechellia. Using data from gene expression analysis involving D. simulans, D. melanogaster, and their hybrids, we observed a significant positive correlation between protein sequence divergence and gene expression differences between hybrids and their parental species. Furthermore, we demonstrate that underexpressed misregulated genes in hybrids are evolving more rapidly at the protein sequence level than nonmisregulated genes or overexpressed misregulated genes, highlighting the possible effects of sexual and natural selection as male-biased genes and nonessential genes are the principal gene categories affected by interspecific hybrid misregulation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Carlo G. Artieri and Wilfried Haerty contributed equally to this publication.  相似文献   

5.
6.
Summary The 68C puff is a highly transcribed region of theDrosophila melanogaster salivary gland polytene chromosomes. Three different classes of messenger RNA originate in a 5000-bp region in the puff; each class is translated to one of the salivary gland glue proteins sgs-3, sgs-7, or sgs-8. These messenger RNA classes are coordinately controlled, with each RNA appearing in the third larval instar and disappearing at the time of puparium formation. Their disappearance is initiated by the action of the steroid hormone ecdysterone. In the work reported here, we studied evolution of this hormone-regulated gene cluster in themelanogaster species subgroup ofDrosophila. Genome blot hybridization experiments showed that five other species of this subgroup have DNA sequences that hybridize toD. melanogaster 68C sequences, and that these sequences are divided into a highly conserved region, which does not contain the glue genes, and an extraordinarily diverged region, which does. Molecular cloning of this DNA fromD. simulans, D. erecta, D. yakuba, andD. teissieri confirmed the division of the region into a slowly and a rapidly evolving protion, and also showed that the rapidly evolving region of each species codes for third instar larval salivary gland RNAs homologous to theD. melanogaster glue mRNAs. The highly conserved region is at least 13,000 bp long, and is not known to code for any RNAs.  相似文献   

7.
Summary Approximately 30–40% ofDrosophila virilis DNA complementary to clonedDrosophila histone genes is reduced to 3.4-kilobase-pair (kbp) segments by Bgl I or Bgl II digestion. The core histone genes of a 3.4-kbp Bgl II segment cloned in the plasmid pDv3/3.4 have the same order as theD. melanogaster core histone genes in the plasmid cDm500: . Nonetheless, pDv3/3.4 and cDm500 have different histone gene configurations: In pDv3/3.4, the region between the H2B and H3 genes contains 0.35 kbp and cannot encode histone H1; in cDm500, the region contains 2.0 kbp and encodes histone H1. The lack of an H1 gene between the H2B and H3 genes in 30–40% ofD. virilis histone gene clusters suggests that changes in histone gene arrays have occurred during the evolution ofDrosophila. The ancestors of modernDrosophila may have possessed multiple varieties of histone gene clusters, which were subsequently lost differentially in thevirilis andmelanogaster lineages. Alternatively, they may have possessed a single variety, which was rearranged during evolution. The H1 genes ofD. virilis andD. melanogaster did not cross-hybridize in vitro under conditions that maintain stable duplexes between DNAs that are 75% homologous. Consequently,D. virilis H1 genes could not be visualized by hybridization to an H1-specific probe and thus remain unidentified. Our observations suggest that the coding segments in the H1 genes ofD. virilis andD. melanogaster are >25% divergent. Our estimate of sequence divergence in the H1 genes ofD. virilis andD. melanogaster seems high until one considers that the coding sequences of cloned H1 genes from the closely related speciesD. melanogaster andD. simulans are 5% divergent.  相似文献   

8.
Previous studies indicate that the tandemly repeated members of the amylase (Amy) gene family evolved in a concerted manner in the melanogaster subgroup and in some other species. In this paper, we analyzed all of the 49 active and complete Amy gene sequences in Drosophila, mostly from subgenus Sophophora. Phylogenetic analysis indicated that the two types of diverged Amy genes in the Drosophila montium subgroup and Drosophila ananassae, which are located in distant chromosomal regions from each other, originated independently in different evolutionary lineages of the melanogaster group after the split of the obscura and melanogaster groups. One of the two clusters was lost after duplication in the melanogaster subgroup. Given the time, 24.9 mya, of divergence between the obscura and the melanogaster groups (Russo et al. 1995), the two duplication events were estimated to occur at about 13.96 ± 1.93 and 12.38 ± 1.76 mya in the montium subgroup and D. ananassae, respectively. An accelerated rate of amino acid changes was not observed in either lineage after these gene duplications. However, the G+C contents at the third codon positions (GC3) decreased significantly along one of the two Amy clusters both in the montium subgroup and in D. ananassae right after gene duplication. Furthermore, one of the two types of the Amy genes with a lower GC3 content has lost a specific regulatory element within the montium subgroup species and D. ananassae. While the tandemly repeated members evolved in a concerted manner, the two types of diverged Amy genes in Drosophila experienced frequent gene duplication, gene loss, and divergent evolution following the model of a birth-and-death process.  相似文献   

9.
Summary Recent sequencing of over 2300 nucleotides containing the alcohol dehydrogenase (Adh) locus in each of 11Drosophila melanogaster lines makes it possible to estimate the approximate age of the electrophoretic fast-slow polymorphism. Our estimates, based on various possible patterns of evolution, range from 610,000 to 3,500,000 years, with 1,000,000 years as a reasonable point estimate. Furthermore, comparison of these sequences with those of the homologous region ofD. simulans andD. mauritiana allows us to infer the pattern of evolutionary change of theD. melanogaster sequences. The integrity of the Adh-f electrophoretic alleles as a single lineage is supported by both unweighted pair-group method (UPGMA) and parsimony analyeses. However, considerable divergence among the Adh-s lines seems to have preceded the origin of the Adh-f allele. Comparisons of the sequences ofD. melanogaster genes with those ofD. simulans andD. mauritiana genes suggest that the split between the latter two species occurred more recently than the divergence of some of the present-day Adh-s genes inD. melanogaster. The phylogenetic analyses of theD. melanogaster sequences show that the fastslow distinction is not perfect, and suggest that intragenic recombination or gene conversion occurred in the evolution of this locus. We extended conventional phylogenetic analyses by using a statistical technique for detecting and characterizing recombination events. We show that the pattern of differentiation of DNA sequences inD. melanogaster is roughly compatible with the neutral theory of molecular evolution.  相似文献   

10.
In insects, the odorant receptor (Or) multigene family is an intermediate-sized family with genes present in all chromosomes, indicating that duplication followed by interchromosomal transposition played an important role in the early stages of the family evolution. Here, we have explored the occurrence of interchromosomal transpositions in more recent stages through the comparative analysis of a subset of Or genes in Drosophila, where the gene content of chromosomal arms is highly conserved. The studied subset consisted of 11 Or genes located on the left arm of chromosome 3 (Muller’s D element) in D. melanogaster. Our study focused on the number and chromosomal arm location of these members of the family across the 12 Drosophila species with complete genome sequences. In contrast to previous results from in situ hybridization comparative mapping that were mainly based on single-copy genes, our study, based on members of a multigene family of moderate size, revealed repeated interchromosomal transposition events and a complex history of some of the studied genes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
The Gpdh genomic region has been cloned and sequenced in Drosophila pseudoobscura. A total of 6.8 kb of sequence was obtained, encompassing all eight exons of the gene. The exons have been aligned with the sequence from D. melanogaster, and the rates of synonymous and nonsynonymous substitution have been compared to those of other genes sequenced in these two species. Gpdh has the lowest rate of nonsynonymous substitution yet seen in genes sequenced in both D. pseudoobscura and D. melanogaster. No insertion/deletion events were observed, and the overall architecture of the gene (i.e., intron sites, etc.) is conserved. An interesting amino acid reversal was noted between the D. melanogaster Fast allele and the D. pseudoobscura gene.  相似文献   

12.
Itoh M  Yu S  Watanabe TK  Yamamoto MT 《Genetica》1999,106(3):223-229
To examine whether structural and functional differences exist in the proliferation disrupter (prod) genes between Drosophila simulans and D. melanogaster, we analyzed and compared both genes. The exon–intron structure of the genes was found to be the same – three exons were interrupted by two introns, although a previous report suggested that only one intron existed in D. melanogaster. The prod genes of D. simulans and D. melanogaster both turn out to encode 346 amino acids, not 301 as previously reported for D. melanogaster. The numbers of nucleotide substitutions in the prod genes was 0.0747 ±  per synonymous site and 0.0116 ± 0.0039 per replacement site, both comparable to those previously known for homologous genes between D. simulans and D. melanogaster. Genetic analysis demonstrated that D. simulans PROD can compensate for a deficiency of D. melanogaster PROD in hybrids. The PRODs of D. simulans and D. melanogaster presumably share the same function and a conserved working mechanism. The prod gene showed no significant interaction with the lethality of the male hybrid between these species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Summary The Threonine-Glycine (Thr-Gly) region of the period gene (per) in Drosophila was compared in the eight species of the D. melanogaster subgroup. This region can be divided into a diverged variable-length segment which is flanked by more conserved sequences. The number of amino acids encoded in the variable-length region ranges from 40 in D. teissieri to 69 in D. mauritiana. This is similar to the range found within natural populations of D. melanogaster. It was possible to derive a Thr-Gly allele of one species from that of another by invoking hypothetical Thr-Gly intermediates. A phylogeny based on the more conserved flanking sequences was produced. The results highlighted some of the problems which are encountered when highly polymorphic genes are used to infer phylogenies of closely related species.  相似文献   

14.
15.
16.
Summary We constructed a cDNA library for the beetle,Tribolium castaneum. This library was screened using a cloned amylase gene fromDrosophila melanogaster as a molecular probe. Beetle amylase cDNA clones were isolated from this bank, and the nucleotide sequence was obtained for a cDNA clone with a coding capacity for 228 amino acids. Both the nucleotide sequence and predicted amino acid sequence were compared to our recent results forD. melanogaster alpha-amylases, along with published sequences for other alpha-amylases. The results show that animal alpha-amylases are highly conserved over their entire length. A borader comparison, which includes plant and microbial alpha-amylase sequences, indicates that parts of the gene are conserved between prokaryotes, plants, and animals. We discuss the potential importance of this and other enzyme-coding genes for the construction of molecular phylogenies and for the study of the general question of molecular clocks in evolution.  相似文献   

17.

Background  

Genes with sex-biased expression often show rapid molecular evolution between species. Previous population genetic and comparative genomic studies of Drosophila melanogaster and D. simulans revealed that male-biased genes have especially high rates of adaptive evolution. To test if this is also the case for other lineages within the melanogaster group, we investigated gene expression in D. ananassae, a species that occurs in structured populations in tropical and subtropical regions. We used custom-made microarrays and published microarray data to characterize the sex-biased expression of 129 D. ananassae genes whose D. melanogaster orthologs had been classified previously as male-biased, female-biased, or unbiased in their expression and had been studied extensively at the population-genetic level. For 43 of these genes we surveyed DNA sequence polymorphism in a natural population of D. ananassae and determined divergence to the sister species D. atripex and D. phaeopleura.  相似文献   

18.
Cytochrome proteins perform a broad spectrum of biological functions ranging from oxidative metabolism to electron transport and are thus essential to all organisms. The b-type cytochrome proteins bind heme noncovalently, are expressed in many different forms and are localized to various cellular compartments. We report the characterization of the cytochrome b5 (Cyt-b) gene of Drosophila virilis and compare its structure to the Cyt-b gene of Drosophila melanogaster. As in D. melanogaster, the D. virilis gene is nuclear encoded and single copy. Although the intron/exon structures of these homologues differ, the Cyt-b proteins of D. melanogaster and D. virilis are approximately 75% identical and share the same size coding regions (1,242 nucleotides) and protein products (414 amino acids). The Drosophila Cyt-b proteins show sequence similarity to other b-type cytochromes, especially in the N-terminal heme-binding domain, and may be targeted to the mitochondrial membrane. The greatest levels of similarity are observed in areas of potential importance for protein structure and function. The exon sequences of the D. virilis Cyt-b gene differ by a total of 292 base changes. However, 62% of these changes are silent. The high degree of conservation between species separated by 60 million years of evolution in both the DNA and amino acid sequences suggests this nuclear cytochrome b5 locus encodes an essential product of the Drosophila system.Correspondence to: C.E. Rozek  相似文献   

19.
Troponin C (TpnC), the calcium-binding subunit of the troponin regulatory complex in the muscle thin filament, is encoded by multiple genes in insects. To understand how TpnC genes have evolved, we characterized the gene number and structure in a number of insect species. The TpnC gene complement is five genes in Drosophilidae as previously reported for D. melanogaster. Gene structures are almost identical in D. pseudoobscura, D. suboboscura, and D. virilis. Developmental patterns of expression are also conserved in Drosophila subobscura and D. virilis. Similar, but not completely equivalent, TpnC gene repertoires have been identified in the Anopheles gambiae and Apis mellifera genomes. Insect TpnC sequences can be divided into three groups, allowing a systematic classification of newly identified genes. The pattern of expression of the Apis mellifera genes essentially agrees with the pattern in Drosophilidae, providing further functional support to the classification. A model for the evolution of the TpnC genes is proposed including the most likely pathway of insect TpnC diversification. Our results suggest that the rapid increase in number and sequence specialization of the adult Type III isoforms can be correlated with the evolution of the holometabolous mode of development and the acquisition of asynchronous indirect flight muscle function in insects. This evolutionarily specialization has probably been achieved independently in different insect orders.Reviewing Editor: Dr. Rüdiger Cerff  相似文献   

20.
Sperm competition is a postcopulatory sexual selection mechanism in species in which females mate with multiple males. Despite its evolutionary relevance in shaping male traits, the genetic mechanisms underlying sperm competition are poorly understood. A recently originated multigene family specific to Drosophila melanogaster, Sdic, is important for the outcome of sperm competition in doubly mated females, although the mechanistic nature of this phenotype remained unresolved. Here, we compared doubly mated females, second mated to either Sdic knockout or nonknockout males, and directly visualize sperm dynamics in the female reproductive tract. We found that a less effective removal of first‐to‐mate male's sperm within the female's sperm storage organs is consistent with a reduced sperm competitive ability of the Sdic knockout males. Our results highlight the role young genes can play in driving the evolution of sperm competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号