首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phenotypic plasticity in pupal colour occurs in three families of butterflies (the Nymphalidae, Papilionidae and Pieridae), typically in species whose pupation sites vary unpredictably in colour. In all species studied to date, larvae ready for pupation respond to environmental cues associated with the colour of their pupation sites and moult into cryptic light (yellow–green) or dark (brown–black) pupae. In nymphalids and pierids, pupal colour is controlled by a neuroendocrine factor, pupal melanization-reducing factor (PMRF), the release of which inhibits the melanization of the pupal cuticle resulting in light pupae. In contrast, the neuroendocrine factor controlling pupal colour in papilionid butterflies results in the production of brown pupae. PMRF was extracted from the ventral nerve chains of the peacock butterfly Inachis io (Nymphalidae) and black swallowtail butterfly Papilio polyxenes (Papilionidae). When injected into pre-pupae, the extracts resulted in yellow pupae in I. io but brown pupae in P. polyxenes. These results suggest that the same neuroendocrine factor controls the plasticity in pupal colour, but that plasticity in pupal colour in these species has evolved independently (convergently).  相似文献   

2.
Environmentally cued polymorphisms are hypothesized to evolve when the environment is coarsegrained and different genotypes are unable to choose the habitats in which they are most fit. In Papilio polyxenes , which has an environmentally cued pupal colour dimorphism, there is genetic variation in both tendency to produce brown or green pupae and preference for green- or brown-inducing pupation sites, but the two traits are not correlated.  相似文献   

3.
1. Environmentally-cued pupal colour in swallowtail butterflies has been hypothesized to evolve as a consequence of (a) the evolution of a preference for pupation sites above the ground that vary in colour and (b) natural selection for crypsis on such sites.
2. This hypothesis was tested by comparing the field survival of green and brown Papilio polyxenes Fabr. pupae placed on green or brown pupation sites that were either above the ground on near the ground.
3. Green pupae on green sites above the ground had a significantly higher probability of survival than did all other pupal colour and pupation site combinations.
4. Pupae on sites above the ground were more likely to be preyed upon during the day, whereas those on sites near the ground were more likely to be preyed upon during the night, suggesting that variation in nocturnal and diurnal predation influences the evolution of pupation site preference.
5. To the extent that diurnal predators use colour vision to locate prey, diurnal predation should favour environmentally-cued pupal colour.  相似文献   

4.
Nondiapause pupae of Papilio machaon L. exhibit pupal colour diphenism comprising green–yellow and brown–white types. To understand the regulatory mechanism underlying the control of pupal colouration in P. machaon, the effect of environmental cues on diapause and nondiapause pupal colouration is investigated. When larvae reared under short‐day and long‐day conditions are allowed to pupate in sites with a smooth surface and a yellow background colour, all diapause pupae exhibit a brown–white type and 89.5% of nondiapause pupae exhibit a green–yellow type, respectively. With rough‐surface pupation sites, all diapause pupae exhibit brown–white and intermediate types, whereas a large proportion of nondiapause pupae exhibit brown–white and intermediate types, although some exhibit a green–yellow type. When extracts prepared from the head‐thoracic and thoracic‐abdominal regions of larval central nervous systems are injected into the ligated abdomens of P. machaon short‐day pharate pupae, all recipients exhibit a brown–white colouration. Furthermore, when each extract is injected into the ligated abdomen of Papilio xuthus L. short‐day pharate pupae with orange‐pupa‐inducing factor activity, recipients injected with the head‐thoracic extract exhibit the brown type, whereas those injected with the thoracic‐abdominal extract exhibit an orange colour. The results indicate that the response to the environmental cues of pupation site in P. machaon changes according to the photoperiodic conditions experienced during larval stages, and that at least two hormonal factors producing brown–white pupae are located in the larval central nervous system, with the secretion of these factors being regulated by the recognition of environmental cues in long‐day larvae.  相似文献   

5.
Abstract. 1. Some swallowtail butterflies produce both green and brown pupae. The phenotypes result from the joint action of genotype and environment and usually make the pupae cryptic in their habitats.
2. The major environmental cues influencing pupal colour in two swallowtail species were determined to be textural and optical.
3. Differences in the usage of these kinds of cues in the two species are thought to have evolved because of major differences in the pupation habitats. P.polyxenes , which usually pupates on slender stems amidst vegetation, responds more strongly to optical cues. B.philenor , which usually pupates on exposed surfaces of tree trunks and cliffs, responds more strongly to textural cues.
4. Differences in the overall tendency to produce brown pupae ('sensitivity': Hazel, 1977) are thought to be related to the frequency of brown pupation sites utilized by these two species: high average sensitivity in philenor , which often uses brown sites, and lower average sensitivity in polyxenes , which often uses green sites.  相似文献   

6.
Pupae of Inachis io show a morphological colour adaptation. Their pigmentation varies, depending on the background colour, between yellow and black. The cuticular pigments involved have been identified as lutein and eumelanin. There are spatial relationships between the locations of both pigments, and the total amounts incorporated in the pupal cuticles are inversely related. During a sensitive period, preceding pupation, the background colour determines the future pupal pigmentation. Ligation experiments show, that in prepupae kept on light background, a factor is released from the anterior part of the body, which reduces the pupal melanization and enhances lutein content. The factor is neither juvenile hormone nor ecdysteroid but rather a water-soluble molecule.  相似文献   

7.
The pupae of the tropical butterfly Danaus chrysippus are either green or pink the switch being operated by a ‘greening’ hormone produced in the larval head. Both environmental and genetic cues are involved in controlling the endocrine mechanism. The environmental factors identified are of two distinct kinds: proximate factors influence pupal colour after the larva has selected its pupation site, whereas ultimate factors are effective at an earlier stage, either prompting choice of pupation site by the larva or priming pupation physiology in a particular direction. Genetic factors preadapt the larva to form a pupa which will be cryptic in the normal or average conditions, climatic or biogeographical, anticipated in its environment. The proximate factors demonstrated are background colour, darkness, light quality (wavelength) and humidity. There is some evidence that substrate texture may also be relevant. Ultimate factors are temperature, humidity and species of larval foodplant. Two closely linked gene loci which govern the phenotype of adult morphs and races either have a pleiotropic effect on pupa colour or are closely linked with other genes which do so. Moreover, the two loci interact epistatically with respect to their pupation effects. Factors producing predominantly green pupae are plant substrates, yellow background, darkness, yellow light, high humidity, high temperature, the b allele at the B locus when homozygous and, on non-plant substrates, the C allele at the C locus. High frequencies of pink pupae result on non-plant substrates, red backgrounds, in blue light, low humidity, low temperatures and in B- and cc genotypes. The C locus alleles, C and c, interact epistatically with the B alleles, their effect on choice of pupation site being determined by linkage phase. Of the two foodplants tested, Calotropis produced a high frequency of green pupae and Tylophora of pinks. The seasonal cycling of rainfall, temperature, availability or condition of foodplant, and gene frequencies are all correlated with oscillations in the frequencies of green and pink pupae. Though genotype influences pupa colour, all genotypes are capable of forming pupae of both colours. The variation can therefore be attributed to an environmental polyphenism superimposed upon a genetic polymorphism. The hormone producing green pupae emanates from the head during the prepupal period. Denied hormonal influence, the pupa is pink. Pupal colour is judged to be aposematic at close range and cryptic at distance.  相似文献   

8.
1. The swallowtail butterfly Battus polydamas archidamas Boisduval, 1936, exhibits polyphenism for pupal coloration (green and brown). It is distributed across arid regions with winter rains and is monophagous on Aristolochia plants, which emerge after the winter rains and dry out the during summer. Thus, day length does not covary positively with host plant productivity. It was hypothesised that pupal colour was driven by food availability, not photoperiod. The benefits of pupal coloration matching the colour of pupation sites in terms of field survival were also investigated to evaluate the adaptive value of pupa colour. 2. Larvae were reared under a factorial array of two photoperiods (LD 10:14 h and LD 14:10 h) and two food availability regimes (leaves ad libitum and available every other day) to assess the frequency of green and brown pupae. Field survival of green and brown pupae was quantified in three commonly used habitats that differ in background coloration (cacti, rocks and shrubs). 3. Food availability determined pupal colour. Larvae in the ad libitum regime resulted mostly in green pupae, while those with restricted food were mostly brown. In contrast, photoperiod did not influence pupal colour. Survival probability of pupae placed on cacti was higher than those placed on rocks and shrubs, and the lowest predation risk across habitats was for green pupae on cacti. 4. Food availability plays a major role in the seasonal polyphenism for pupal colour of specialist butterflies inhabiting arid environments with winter rains.  相似文献   

9.
The swallowtail butterfly Papilio xuthus Linné [Lepidoptera: Papilionidae] exhibits pupal protective color polyphenism. Interactions of various environmental factors on pupal coloration were analyzed in non-diapausing individuals. Under sufficient light (200lux), most pupating larvae became green pupae when the surface of the pupation site was smooth, while they became brown when the surface was rough. Tactile signals are the positive environmental factors causing induction of the brown pupal coloration. In dark boxes, the induction of the brown pupal coloration was easily induced even on a smooth surface, suggesting that light suppresses induction of brown coloration. Different colors of pupation sites did not affect pupal coloration under sufficient light. Environmental factors received during a critical period both before girdling and after girdling affected pupal coloration. When tactile signals received from rough surfaces reach threshold levels during pupation, brown pupal coloration is determined. Larvae reared under a daily periodicity of natural light formed a girdle at midnight, subsequently, the prepupae received strong daylight the following day. Under natural light most larvae produced brown pupae on rough surfaces and green pupae on smooth surfaces.  相似文献   

10.
ABSTRACT.
  • 1 There are significant differences in the effects of larval photo-period on diapause and pupal colour among the species Papilio polyxenes Fabr., P.troilus L., Battus philenor (L.) and Eurytides marcellus (Cramer).
  • 2 Diapause and pupal colour in P.polyxenes and P.troilus are strongly influenced by larval photoperiod, short photophase eliciting brown diapausing pupae. Photoperiods of 15L:9D permit the expression of the green and brown pupal colour alternatives.
  • 3 Pupal colour in B.philenor and E.marcellus is not affected by larval photoperiod, but short photophase induces diapause in these species.
  • 4 All species except B.philenor show an association between brown pupal colour and diapause: Emarcellus when reared on long (midsummer) photophase, P.polyxenes and P.troilus when reared on short (autumnal) photophase.
  • 5 In P.polyxenes, short photophase can affect pupal colour responses directly, whether the individual enters diapause or not.
  • 6 Differences among the species are related to differences in the ecology of their natural pupation sites.
  相似文献   

11.
Holometabolous insects do not excrete but store metabolic wastes during the pupal period. The waste is called meconium and is purged after adult emergence. Although the contents of meconium are well-studied, the developmental and physiological regulation of meconium accumulation is poorly understood. In Bombyx mori, meconium is accumulated in the rectal sac; thereby, the rectal sac distends at the late pupal stage. Here, we show that rectal sac distention occurs between 4 and 5 days after pupation. The distention is halted by brain-removal just after larval-pupal ecdysis but not by brain-removal 1 day after pupation. In the pupae, brain-removal just after ecdysis kept the hemolymph ecdysteroid titer low during early and mid-pupal stages. An injection of 20-hydroxyecdysone (20E) evoked the distention that was halted by brain-removal in a dose-dependent manner. Therefore, brain-removal caused the lack of ecdysteroid, and rectal sac distention did not appear in the brain-removed pupae because of the lack of ecdysteroid. We conclude that rectal sac distention is one of the developmental events regulated by 20E during the pupal period in B. mori.  相似文献   

12.
Abstract. The abdominal colour pattern of Eristalis arbustorum (L.) shows seasonal variation, with animals emerging in spring being darker than those emerging during summer. One of the most important environmental cues influencing the abdominal colour pattern is developmental temperature. An experiment was carried out to establish which period during the immature stages was important in determining final adult colour pattern. The results indicate a good relationship between the length of the pupal period and both the extent of the paler markings on the abdomen and the grey score of these markings. The length of the larval period did not have any effect on adult colour pattern.  相似文献   

13.
Abstract The pre-calling period (PCP), between emergence and first release of pheromone, determines the number of nights over which female Mythimna separata (Walker) (Lepidoptera: Noctuidae) can express their migratory potential. In its seasonal migrations in eastern Asia, this armyworm penetrates to latitudes at which it is unable to over-winter but at which reliable photoperiodic and temperature cues anticipate the deterioration of conditions. The effect of these environmental factors on PCP was examined in moths descended from samples collected in Nanjing (32oN) during the summer migration. Under LD 14:10h, a reduction in temperature, from 23oC during larval development to 18oC from 24 h after pupation, resulted in a twofold increase in PCP compared with insects held at 23oC. At 23oC, short days (LD 12:12 h) extended PCP but the magnitude of the response was increased under a regime of decreasing photoperiod, from LD 15:9h, to LD 12:12 h through larval, pupal and adult development. Further experiments demonstrated that the response depended on a decrease in photoperiod from pre-pupal stage to adult emergence (the pupal period is spent below ground). A reduction of 50–60min over the 13–15 day pupal period at 23oC was effective. The significance of decreasing photoperiods, irrespective of absolute levels, as a cue for species whose migrations traverse substantial ranges of latitude is considered and the results are discussed in relation to the genetic determination of PCP in M.separata and to its seasonal migrations in eastern China.  相似文献   

14.
Although several factors influence herbivore insect distributions at any particular scale, the most important determinants are likely to differ between species with different life histories. Identifying what these factors are and how they relate to life history forms an important component of understanding the population dynamics of species, and the habitat requirements necessary for their conservation. The pupal stage of two wild silk moth species, Gonometa postica Walker and G. rufobrunnea Aurivillius (Lepidoptera: Lasiocampidae), is the target of harvesting practices that are totally dependent on the availability of pupae from natural populations. Consequently, and partly due to poor knowledge of the species' biology, there is substantial interest in the distribution of pupae among and within trees for both these species. It was investigated whether between- and within-tree pupal distributions in these two species are non-random, and if so, whether there are relationships between pupation site use and tree characteristics such as tree size, available pupation space and branch position. Between-tree patterns in pupal abundance were random in terms of absolute spatial position, but markedly non-random with respect to tree characteristics. The apparent G. postica pupae were aggregated on large larval host plants, whereas the cryptic G. rufobrunnea pupae were aggregated on non-host plants. These patterns reflect the life history differences of the two species. In contrast, at the within-tree scale, branch position, aspect and tree shape influenced pupation site choice similarly for both species. These patterns might be related to microclimate. Documenting between-tree and within-tree patterns in Gonometa pupal distributions is the first step towards explaining pupation site selection, as well as identifying possible evolutionarily selective factors in the species, and generating testable hypotheses from these.  相似文献   

15.
ABSTRACT.
  • 1 Natural pupation sites and corresponding pupal colour (green or brown) were determined for samples of Battus philenor (L.) from two Californian populations.
  • 2 Larvae pupate off the ground on trees, shrubs and man-made objects.
  • 3 The vertical distribution of pupation sites and relative frequencies of pupae formed on narrow twigs and broad substrates show interpopulation variability, and seem to be determined by habitat-specific and possibly behavioural differences among populations.
  • 4 The percentage of‘mismatched’pupae in green leafy environments (brown) is greater than that on wide substrates (green). Heterogeneity in samples of the latter suggest strong but sporadic predation pressure on non-cryptic pupae in exposed areas.
  • 5 Green and brown substrates generally promoted formation of cryptic green and brown pupae although rearing conditions modified pupal colour response to substrate colour and larval pupation site choice.
  • 6 Warm temperatures and long days increased the production of brown pupae. Short photoperiods increased the tendency of larvae to pupate on narrow twig-like substrates and to form green pupae.
  • 7 Green pupae show less tendency to diapause than brown pupae. The difference between percentage diapause in the two colour forms increases under conditions favouring progressively more continuous development.
  相似文献   

16.
The butterflies Graphium sarpedon nipponum Fruhstorfer and Papilio xuthus Linné show pupal protective color polymorphism, but the two species appear to have different sensory mechanisms for determining pupal coloration. When light was of sufficient illumination, the larvae of Graphium sarpedon became bright yellowish green pupae on white pupation boards and reddish brown pupae on black pupation boards. The pupal coloration thus strongly depended on the brightness of the pupation site. In addition, larvae became bright yellowish green pupae in complete darkness. From these results, measurement of the illumination suggested that pupal color is determined by the illuminant difference between incidence light from the dorsal direction and ventral light from a paper board; i.e., the sum of the reflected light of the board plus the penetrated light passing through the board. The illuminant difference required for reddish brown coloration was 40 lux or more. The optical signals received through the stemmata during a critical period before formation of the thorax garter (band string) were important for coloration. By contrast, in Papilio xuthus, successive tactile signals from a rough surfaced pupation site during a critical period before and after formation of the garter were important for determining brown pupal coloration.  相似文献   

17.
1. Prior to pupation, lepidopteran larvae enter a wandering phase lasting up to 30 h before choosing a pupation site. Because stillness is important for concealment, this behaviour calls for an adaptive explanation. 2. The explanation most likely relates to the need to find a suitable pupation substrate, especially in terms of shelter from predation, and given that many predators and parasitoids use host plants as prey‐location cues, mortality probably decreases with distance from the host plant. Hence, remaining on the host includes a long‐term risk, while moving away from the host introduces an increased risk during locomotion. 3. Bivoltine species that overwinter in the pupal stage produce two kinds of pupae; non‐diapausing pupae from which adults emerge after 1–2 weeks, or diapausing pupae that overwinter with adults emerging after 8–10 months. 4. Given the hypothesis of distance‐from‐host‐plant‐related predation, this should select for phenotypic plasticity with larvae in the diapausing generation having a longer wandering phase than larvae under direct development, if there is a trade‐off between mortality during the wandering phase and accumulated mortality during winter. 5. Here this prediction is tested by studying the duration of the wandering period in larvae of the partially bivoltine swallowtail butterfly, Papilio machaon, under both developmental pathways. 6. The results are in agreement with the predictions and show that the larval wandering phase is approximately twice as long under diapause development. The authors suggest that the longer duration of the wandering phase in the diapause generation is a general phenomenon in Lepidoptera.  相似文献   

18.
Eristalis tenax L. and E. intricarius L. are two hoverflies which vary considerably in colour pattern. Whilst much of the phenotypic variation in both species is due to genetic variation at major gene loci, there are interactions with pupal temperature and with age of adult. Low pupal temperatures produce, on average, darker abdominal patterns in E. tenax , although the effect is hard to pick out in natural populations. Changes of pattern with age convert a bimodal autumn population to a unimodal post-hibernation population in the following spring. Hair colour is also made darker by cold treatment. Pupal treatments have a strong effect on hair colouration in E. intricarius. High temperatures inhibit the production of black hairs on the thorax, but not all the genotypes are equally sensitive to temperature. Seasonal fluctuations in colour pattern frequencies are detectable in E. intricarius. In three Eristalis species that have been studied so far, the interactions between genotype, age and temperature operate in quite different ways. The temperature responses may be relevant to theories of thermal melanism, although the colour pattern polymorphisms are, more obviously, examples of Batesian mimicry.  相似文献   

19.
Characteristics of summer diapause in the onion maggot, Delia antiqua, were clarified by laboratory experiments. Temperature was the primary factor for the induction of summer diapause in this species. The critical temperature for diapause induction was approximately 24 degrees C, regardless of the photoperiod. At 23 degrees C, the development of the diapausing pupae was arrested the day after pupariation, when about 7% of the total pupal development had occurred in terms of total effective temperature (degree-days). The most sensitive period for temperature with regard to diapause induction was estimated to be between pupariation and "pupation" (i.e., evagination of the head in cyclorrhaphous flies). Completion of diapause occurred at a wide range of temperatures (4-25 degrees C): The optimal temperature was approximately 16 degrees C, at which temperature only five days were required for diapause completion. The characteristics of summer diapause in D. antiqua are discussed in comparison with those of summer dormancy in a congener D. radicum and those of winter diapause in D. antiqua.  相似文献   

20.
The chrysanthemum longicorn beetle, Phytoecia rufiventris, overwinters in the adult stage and reproduces in spring. Larvae of this beetle develop during summer inside a host stem or root. In the present study, photoperiodic control of larval development and its adaptive significance were examined in this beetle using an artificial diet. Larvae showed a short-day photoperiodic response at 25 °C with a critical day length of around 14 h; larvae reared under short-day conditions pupated, whereas those reared under long-day conditions entered summer diapause with some supernumerary molts and did not pupate. A similar response was found at 30 °C, but with a shorter critical day length. Below the critical day length, a shorter day length corresponded to a shorter larval period. Larvae transferred from long-day conditions to various photoperiods showed a similar quantitative response. Field rearing of larvae starting at various times of year showed that pupation occurs within a relatively short period in early autumn. Field rearing of pupae and adults at various times indicated that only pupation in early autumn results in a high survival rate until winter. Earlier or later pupation led to a low survival rate due to death before overwintering in the adult and pupal stages, respectively. Thus, in P. rufiventris, timing of pupation regulated by the quantitative short-day photoperiodic response is vital for survival. Relatively lower developmental threshold in the pupal stage supports this hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号