首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
15-Deoxy-Delta(12,14)-prostaglandin J(2) (dPGJ(2)) is a metabolite of prostaglandin D(2), that binds to peroxisome proliferator-activated receptor gamma (PPARgamma). PPARgamma and prostaglandin D(2) synthase, which is required for dPGJ(2) synthesis, are predominantly expressed in macrophages. In contrast, IL-10 and IL-12 produced by macrophages stimulate Th1 and Th2 immune response, respectively. This study investigated the effect of dPGJ(2) on IL-10 and IL-12 production by macrophages in response to lipopolysaccharide (LPS). Our data clearly demonstrated that dPGJ(2) inhibits LPS-induced IL-10 and IL-12 production by macrophages. A different agonist of PPARgamma, 13-hydroxyoctadecadienoic acid, similarly inhibited the production of IL-10 and IL-12 in response to LPS. Further, dPGJ(2) did not appear to act through the PGD(2) receptor. These results suggest that dPGJ(2) may inhibit LPS-induced IL-10 and IL-12 production by macrophages through PPARgamma.  相似文献   

2.
3.
Activation of the macrophage cell line RAW 264.7 with lipopolysaccharide (LPS) transiently activates protein kinase C zeta (PKC zeta) and Jun N-terminal kinase (JNK) through a phosphoinositide-3-kinase (PI3-kinase)-dependent pathway. Incubation of LPS-treated cells with the cyclopentenone 15-deoxy-Delta(12,14)-prostaglandin J(2) (15dPGJ(2)) promoted a sustained activation of PKC zeta and JNK and inhibited I kappa B kinase (IKK) and NF-kappa B activity. Accordingly, 15dPGJ(2) induced an imbalance between JNK and IKK activities by increasing the former signaling pathway and inhibiting the latter signaling pathway. Under these conditions, apoptosis was significantly enhanced; this response was very dependent on PKC zeta and JNK activation. The effect of 15dPGJ(2) on PKC zeta activity observed in LPS-activated macrophages was not dependent on a direct action of this prostaglandin on the enzyme but was due to the activation of a step upstream of PI3-kinase. Moreover, LPS promoted the redistribution of activated PKC zeta from the cytosol to the nucleus, a process that was enhanced by treatment of the cells with 15dPGJ(2) that favored a persistent and broader distribution of PKC zeta in the nucleus. These results indicate that 15dPGJ(2) and other cyclopentenone prostaglandins, through the sustained activation of PKC zeta, might contribute significantly to the process of resolution of inflammation by promoting apoptosis of activated macrophages.  相似文献   

4.
Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands have been shown to inhibit the effects of proinflammatory cytokines such as interleukin-1beta (IL-1beta). This cytokine plays a key role in articular pathophysiologies by inducing the production of inflammatory mediators such as nitric oxide (NO) and prostaglandin E(2) (PGE(2)). We previously demonstrated that 15d-PGJ(2) was more potent than troglitazone to counteract IL-1beta effects on chondrocytes. Here, we studied the action of 15d-PGJ(2) on intracellular targets in nuclear factor-kappaB (NF-kappaB) signalling pathway in IL-1beta treated rat chondrocytes. We found that 15d-PGJ(2) decreased inhibitor kappaBalpha (IkappaBalpha) degradation but not its phosphorylation by specifically inhibiting IkappaB kinase beta (IKKbeta), but not IKKalpha, enzymatic activity. We further evaluated the involvement of PPARgamma in the anti-inflammatory action of its ligands. In chondrocytes overexpressing functional PPARgamma protein, 15d-PGJ(2) pre-treatment inhibited inducible NO synthase and COX-2 mRNA expression, nitrite and PGE(2) production, p65 translocation and NF-kappaB activation. Troglitazone or rosiglitazone pre-treatment had no effect. 15d-PGJ(2) exhibited the same effect in chondrocytes overexpressing mutated PPARgamma protein. These results suggest that 15d-PGJ(2) exerts its anti-inflammatory effect in rat chondrocytes by a PPARgamma-independent mechanism, which can be conferred to a partial inhibition of IkappaBalpha degradation.  相似文献   

5.
The effect of piceatannol on lipopolysaccharide (LPS)-induced nitric oxide (NO) production was examined. Piceatannol significantly inhibited NO production in LPS-stimulated RAW 264.7 cells. The inhibition was due to the reduced expression of an inducible isoform of NO synthase (iNOS). The inhibitory effect of piceatannol was mediated by down-regulation of LPS-induced nuclear factor (NF)-kappaB activation, but not by its cytotoxic action. Piceatannol inhibited IkappaB kinase (IKK)-alpha and beta phosphorylation, and subsequently IkappaB-alpha phosphorylation in LPS-stimulated RAW 264.7 cells. On the other hand, piceatannol did not affect activation of mitogen-activated protein (MAP) kinases including extracellular signal regulated kinase 1/2 (Erk1/2), p38 and stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK). Piceatannol inhibited the phosphorylation of Akt and Raf-1 molecules, which regulated the activation of IKK-alpha and beta phosphorylation. The detailed mechanism of the inhibition of LPS-induced NO production by piceatannol is discussed.  相似文献   

6.
Tumor necrosis factor alpha (TNFalpha)-stimulated nuclear factor (NF) kappaB activation plays a key role in the pathogenesis of inflammatory bowel disease (IBD). Phosphorylation of NFkappaB inhibitory protein (IkappaB) leading to its degradation and NFkappaB activation, is regulated by the multimeric IkappaB kinase complex, including IKKalpha and IKKbeta. We recently reported that 5-aminosalicylic acid (5-ASA) inhibits TNFalpha-regulated IkappaB degradation and NFkappaB activation. To determine the mechanism of 5-ASA inhibition of IkappaB degradation, we studied young adult mouse colon (YAMC) cells by immunodetection and in vitro kinase assays. We show 5-ASA inhibits TNFalpha-stimulated phosphorylation of IkappaBalpha in intact YAMC cells. Phosphorylation of a glutathione S-transferase-IkappaBalpha fusion protein by cellular extracts or immunoprecipitated IKKalpha isolated from cells treated with TNFalpha is inhibited by 5-ASA. Recombinant IKKalpha and IKKbeta autophosphorylation and their phosphorylation of glutathione S-transferase-IkappaBalpha are inhibited by 5-ASA. However, IKKalpha serine phosphorylation by its upstream kinase in either intact cells or cellular extracts is not blocked by 5-ASA. Surprisingly, immunodepletion of cellular extracts suggests IKKalpha is predominantly responsible for IkappaBalpha phosphorylation in intestinal epithelial cells. In summary, 5-ASA inhibits TNFalpha-stimulated IKKalpha kinase activity toward IkappaBalpha in intestinal epithelial cells. These findings suggest a novel role for 5-ASA in the management of IBD by disrupting TNFalpha activation of NFkappaB.  相似文献   

7.
8.
9.
15-deoxy-Delta(12,14) prostaglandin J(2) (15dPGJ(2)), a peroxisome proliferator-activated receptor gamma (PPARgamma) ligand, induced synergistic stimulation of DNA synthesis in the presence of phorbol dibutyrate (PDB) in Swiss 3T3 cells. This effect was dose-dependent and the maximum response was obtained at 2 microM 15dPGJ(2), although higher concentrations of 15dPGJ(2) were cytotoxic. Furthermore, 15dPGJ(2) synergizes with PDB to induce cell-cycle progression and cyclin D(1) expression. Rosiglitazone and ciglitazone, two other agonists of PPARgamma, did not synergize with PDB to induce DNA synthesis, suggesting that activation of PPARgamma is not involved in 15dPGJ(2)-induced DNA synthesis. 15dPGJ(2) neither increased the levels of cAMP, nor changed the phosphorylation state of CREB, nor induced calcium mobilization, indicating that 15dPGJ(2) effects are independent of prostaglandin D(2) receptor (DP1 and DP2). Moreover, 15dPGJ(2) did not induce activation of PKB/AKT or activation of extracellular signal-regulated kinase (ERK). These results establish a proliferative role for 15dPGJ(2) in Swiss 3T3 cells independent of the activation of PPARgamma or the PGD(2) receptors.  相似文献   

10.
15-Deoxy-Delta(12-14)-prostaglandin J(2) (dPGJ2) and thiazolidinediones are known as ligands for the peroxisome proliferator activator receptor gamma (PPAR gamma) a member of the nuclear receptor superfamily. Herein, we show that dPGJ2 activates, in cultured primary astrocytes, Erk, Jnk, p38 MAP kinase, and ASK1, a MAP kinase kinase kinase, which can be involved in the activation of Jnk and p38 MAP kinase. The activation kinetic is similar for the three MAP kinase. The activation of the MAP kinases is detectable around 0.5 h. The activation increases with dPGJ2 in a dose dependent manner (0-15 microm). A scavenger of reactive oxygenated species (ROS), N-acetylcysteine (NAC) at 20 mm, completely suppresses the activation of MAP kinases and ASK1, suggesting a role for oxidative stress in the activation mechanism. Other prostaglandin cyclopentenones than dPGJ2, A(2), and to a lesser degree, A(1) also stimulate the MAP kinases, although they do not bind to PPAR gamma. Ciglitazone (20 microm), a thiazolidinedione that mimics several effects of dPGJ2 in different cell types, also activates the three MAP kinase families and ASK1 in cultured astrocytes. However the activation is more rapid (it is detectable at 0.25 h) and more sustained (it is still strong after 4 h). NAC prevents the activation of the three MAP kinase families by ciglitazone. Another thiazolidinedione that binds to PPAR gamma, rosiglitazone, does not activate MAP kinases, indicating that the effect of ciglitazone on MAP kinases is independent of PPAR gamma. Ciglitazone and less strongly dPGJ2 activate Erk in undifferentiated cells of the adipocyte cell line 1B8. Ciglitazone also activates Jnk and p38 MAP kinase in these preadipocytes. Our findings suggest that a part of the biological effects of dPGJ2 and ciglitazone involve the activation of the three MAP kinase families probably through PPAR gamma-independent mechanisms involving ROS.  相似文献   

11.
Nitric oxide (NO) and prostaglandins are produced as a result of the stimulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2, respectively, in response to cytokines or lipopolysaccharide (LPS). We demonstrate that the activity of integrin-linked kinase (ILK) is stimulated by LPS activation in J774 macrophages. Inhibition of ILK activity by dominant-negative ILK or a highly selective small molecule ILK inhibitor, in epithelial cells or LPS-stimulated J774 cells and murine macrophages, resulted in inhibition of iNOS expression and NO synthesis. LPS stimulates the phosphorylation of IkappaB on Ser-32 and promotes its degradation. Inhibition of ILK suppressed this LPS-stimulated IkappaB phosphorylation and degradation. Similarly, ILK inhibition suppressed the LPS-stimulated iNOS promoter activity. Mutation of the NF-kappaB sites in the iNOS promoter abolished LPS- and ILK-mediated regulation of iNOS promoter activity. Overexpression of ILK-stimulated NF-kappaB activity and inhibition of ILK or protein kinase B (PKB/Akt) suppressed this activation. We conclude that ILK can regulate NO production in macrophages by regulating iNOS expression through a pathway involving PKB/Akt and NF-kappaB. Furthermore, we also demonstrate that ILK activity is required for LPS stimulated cyclooxygenase-2 expression in murine and human macrophages. These findings implicate ILK as a potential target for anti-inflammatory applications.  相似文献   

12.
Lipopolysaccharide (LPS)-activated macrophages are pivotal in innate immunity. With LPS treatment, extracellular signals are transduced into macrophages via Toll-like receptor 4 and induce inflammatory mediator production by activating signaling pathways, including the nuclear factor-kappaB (NF-kappaB) pathway and the mitogen-activated protein kinase (MAPK) pathway. However, the mechanisms by which the intracellular free Ca2+ concentration ([Ca2+]i) increases and protein kinase C (PKC) is activated remain unclear. Therefore, we investigated the signaling pathway for Ca2+- and PKC-dependent NF-kappaB activation, inducible nitric-oxide synthase expression, and tumor necrosis factor-alpha (TNF-alpha) production in LPS-stimulated rat peritoneal macrophages. The results demonstrated that the LPS-induced transient [Ca2+]i increase is due to Ca2+ release and influx. Extracellular and intracellular Ca2+ chelators inhibited phosphorylation of PKCalpha and PKCbeta. A PKCbeta-specific and a general PKC inhibitor blunted phosphorylation of serine in mitogen-activated/extracellular signal-regulated kinase kinase kinase (MEKK) 1. Moreover, a MEKK inhibitor reduced activation of inhibitorykappaB kinase and NF-kappaB. Upstream of the [Ca2+]i increase, a protein-tyrosine kinase inhibitor reduced phosphorylation of phospholipase C (PLC) gamma. Furthermore, a PLC inhibitor eliminated the transient [Ca2+]i increase and decreased the amount of activated PKC. Therefore, these results revealed the following roles of Ca2+ and PKC in the signaling pathway for NF-kappaB activation in LPS-stimulated macrophages. After LPS treatment, protein-tyrosine kinase mediates PLCgamma1/2 phosphorylation, which is followed by a [Ca2+]i increase. Several PKCs are activated, and PKCbeta regulates phosphorylation of serine in MEKK1. Moreover, MEKKs regulate inhibitory kappaB kinase activation. Sequentially, NF-kappaB is activated, and inducible nitric-oxide synthase and tumor necrosis factor-alpha production is promoted.  相似文献   

13.
IKKgamma/NEMO is an essential regulatory component of the IkappaB kinase complex that is required for NF-kappaB activation in response to various stimuli including tumor necrosis factor-alpha and interleukin-1beta. To investigate the mechanism by which IKKgamma/NEMO regulates the IKK complex, we examined the ability of IKKgamma/NEMO to recruit the IkappaB proteins into this complex. IKKgamma/NEMO binding to wild-type, but not to a kinase-deficient IKKbeta protein, facilitated the association of IkappaBalpha and IkappaBbeta with the high molecular weight IKK complex. Following tumor necrosis factor-alpha treatment of HeLa cells, the majority of the phosphorylated form of endogenous IkappaBalpha was associated with the high molecular weight IKK complex in HeLa cells and parental mouse embryo fibroblasts but not in IKKgamma/NEMO-deficient cells. Finally, we demonstrate that IKKgamma/NEMO facilitates the association of the IkappaB proteins and IKKbeta and leads to increases in IKKbeta kinase activity. These results suggest that an important function of IKKgamma/NEMO is to facilitate the association of both IKKbeta and IkappaB in the high molecular weight IKK complex to increase IkappaB phosphorylation.  相似文献   

14.
15.
Two related kinases, IkappaB kinase alpha (IKKalpha) and IKKbeta, phosphorylate the IkappaB proteins, leading to their degradation and the subsequent activation of gene expression by NF-kappaB. IKKbeta has a much higher level of kinase activity for the IkappaB proteins than does IKKalpha and is more critical than IKKalpha in modulating tumor necrosis factor alpha activation of the NF-kappaB pathway. These results indicate an important role for IKKbeta in activating the NF-kappaB pathway but leave open the question of the role of IKKalpha in regulating this pathway. In the current study, we demonstrate that IKKalpha directly phosphorylates IKKbeta. Moreover, IKKalpha either directly or indirectly enhances IKKbeta kinase activity for IkappaBalpha. Finally, transfection studies to analyze NF-kappaB-directed gene expression suggest that IKKalpha is upstream of IKKbeta in activating the NF-kappaB pathway. These results indicate that IKKalpha, in addition to its previously described ability to phosphorylate IkappaBalpha, can increase the ability of IKKbeta to phosphorylate IkappaBalpha.  相似文献   

16.
17.
NF-kappaB is activated in response to proinflammatory stimuli, infections, and physical stress. While activation of NF-kappaB by many stimuli depends on the IkappaB kinase (IKK) complex, which phosphorylates IkappaBs at N-terminal sites, the mechanism of NF-kappaB activation by ultraviolet (UV) radiation remained enigmatic, as it is IKK independent. We now show that UV-induced NF-kappaB activation depends on phosphorylation of IkappaBalpha at a cluster of C-terminal sites that are recognized by CK2 (formerly casein kinase II). Furthermore, CK2 activity toward IkappaB is UV inducible through a mechanism that depends on activation of p38 MAP kinase. Inhibition of this pathway prevents UV-induced IkappaBalpha degradation and increases UV-induced cell death. Thus, the p38-CK2-NF-kappaB axis is an important component of the mammalian UV response.  相似文献   

18.
Activation of the stress response attenuates proinflammatory responses by suppressing cytokine-stimulated activation of the NF-kappaB signaling pathway. In this study, we show that the activation of the cellular stress response, either by heat shock treatment or after exposure to sodium arsenite, leads to a transient inhibition of IkappaBalpha phosphorylation. Inhibition of IkappaBalpha phosphorylation after stress was associated with the detergent insolubilization of the upstream kinases, IkappaB kinase alpha (IKKalpha) and IkappaB kinase beta, components involved in IkappaBalpha phosphorylation. Pretreatment of cells with glycerol, a chemical chaperone that reduces the extent of stress-induced protein denaturation, reduced the stress-dependent detergent insolubility of the IKK complex and restored the cytokine-stimulated phosphorylation of IkappaB. The stress-dependent insolubility of the IKK complex appeared reversible; as the cells recovered from the heat shock treatment, the IKK complex reappeared within the soluble fraction of cells and was again capable of mediating the phosphorylation of IkappaBalpha in response to added cytokines. Treatment of cells with geldanamycin, an inhibitor of heat shock protein 90 (Hsp90) function, also resulted in IKK detergent insolubility and proteasome-mediated degradation of the IKK complex. Furthermore, while IKKalpha coprecipitated with Hsp90 in control cells, coprecipitation of the two proteins was greatly reduced in those cells early after stress or following exposure to geldanamycin. Stress-induced transient insolubilization of the IkappaB kinase complex following its dissociation from Hsp90 represents a novel mechanism by which the activation of the stress response inhibits the NF-kappaB signaling pathway in response to proinflammatory stimuli.  相似文献   

19.
Nuclear factor (NF)-kappaB regulates a central common signaling for immunity and cell survival. Artemisolide (ATM) was previously isolated as a NF-kappaB inhibitor from a plant of Artemisia asiatica. However, molecular basis of ATM on NF-kappaB activation remains to be defined. Here, we demonstrate that ATM is a typical inhibitor of IkappaB kinase beta (IKKbeta), resulting in inhibition of lipopolysaccharide (LPS)-induced NF-kappaB activation in RAW 264.7 macrophages. ATM inhibited the kinase activity of highly purified IKKbeta and also LPS-induced IKK activity in the cells. Moreover, the effect of ATM on IKKbeta activity was completely abolished by substitution of Cys-179 residue of IKKbeta to Ala residue, indicating direct targeting site of ATM. ATM could inhibit IkappaBalpha phosphorylation in LPS-activated RAW 264.7 cells and subsequently prevent NF-kappaB activation. Further, we demonstrate that ATM down-regulates NF-kappaB-dependent TNF-alpha expression. Taken together, this study provides a pharmacological potential of ATM in NF-kappaB-dependent inflammatory disorders.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号