首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel isothermal titration calorimetry (ITC) method was applied to investigate RNA helical packing driven by the GAAA tetraloop–receptor interaction in magnesium and potassium solutions. Both the kinetics and thermodynamics were obtained in individual ITC experiments, and analysis of the kinetic data over a range of temperatures provided Arrhenius activation energies (ΔH) and Eyring transition state entropies (ΔS). The resulting rich dataset reveals strongly contrasting kinetic and thermodynamic profiles for this RNA folding system when stabilized by potassium versus magnesium. In potassium, association is highly exothermic (ΔH25°C = −41.6 ± 1.2 kcal/mol in 150 mM KCl) and the transition state is enthalpically barrierless (ΔH = −0.6 ± 0.5). These parameters are sigificantly positively shifted in magnesium (ΔH25°C = −20.5 ± 2.1 kcal/mol, ΔH = 7.3 ± 2.2 kcal/mol in 0.5 mM MgCl2). Mixed salt solutions approximating physiological conditions exhibit an intermediate thermodynamic character. The cation-dependent thermodynamic landscape may reflect either a salt-dependent unbound receptor conformation, or alternatively and more generally, it may reflect a small per-cation enthalpic penalty associated with folding-coupled magnesium uptake.  相似文献   

2.
The Mo–Fe protein and the Fe protein which together constitute the nitrogenase of Klebsiella pneumoniae were prepared from bacteria grown in 57Fe-enriched medium. The Mössbauer spectrum of the Mo–Fe protein, as isolated in the presence of Na2S2O4, showed that the protein contained three iron species, called M4, M5 and M6. The area of the spectrum associated with species M4, with δ=0.65mm/s and ΔE=3.05mm/s at 4.2°K, corresponded to two iron atoms/molecule of protein and it is interpreted as being due to a high-spin ferrous, spin-coupled pair of iron atoms. The iron atoms of species M4 may be involved in the quaternary structure of the protein. Species M5, with δ=0.61mm/s and ΔE=0.83mm/s at 77°K, corresponded to eight iron atoms/molecule of protein and is interpreted as being due to Fe4S4 or Fe2S2 low-spin ferrous iron clusters. Species M6, with δ=0.37mm/s and ΔE=0.71mm/s at 77°K, also corresponded to eight iron atoms/molecule of protein and, at 4.2°K, became a broad shallow absorption, characteristic of magnetic hyperfine interaction. Oxidation of the Mo–Fe protein with the redox dye Lauth''s Violet did not affect the activity of the protein but changed species M4, M5 and M6 into the species M1 (δ=0.37mm/s, ΔE=0.75mm/s at 77°K, broad magnetic component at 4.2°K) and M2 (δ=0.35mm/s, ΔE=0.9mm/s at 4.2°K). In the presence of the Fe protein, Na2S2O4, ATP and Mg2+, the M6 component of the Mo–Fe protein was replaced by species M7 with δ=0.46mm/s, ΔE=1.04mm/s at 4.2°K. The change in Mössbauer parameters associated with the M6 → M7 transformation was very similar to the change observed on reduction of the high-potential Fe protein from Chromatium vinosum. In contrast, Na2S2O4-reduced Fe protein contained only one type of iron cluster (F4). Species F4 had δ=0.50mm/s, ΔE=0.9mm/s at 195°K, and at 4.2°K broadened in a manner characteristic of a magnetic hyperfine interaction, associated with half-integral spin, equally distributed over all four atoms of the Fe protein. The Mössbauer spectra of the Mo–Fe and the Fe protein under argon were unaffected by the reducible substrates N2 and C2H2 and the inhibitor CO in the presence of ATP, Mg2+ and Na2S2O4. A number of Mössbauer spectral species associated with inactivated Mo–Fe and Fe proteins are described and discussed.  相似文献   

3.
F1-ATPase (F1) is a rotary motor protein fueled by ATP hydrolysis. Although the mechanism for coupling rotation and catalysis has been well studied, the molecular details of individual reaction steps remain elusive. In this study, we performed high-speed imaging of F1 rotation at various temperatures using the total internal reflection dark-field (TIRDF) illumination system, which allows resolution of the F1 catalytic reaction into elementary reaction steps with a high temporal resolution of 72 µs. At a high concentration of ATP, F1 rotation comprised distinct 80° and 40° substeps. The 80° substep, which exhibited significant temperature dependence, is triggered by the temperature-sensitive reaction, whereas the 40° substep is triggered by ATP hydrolysis and the release of inorganic phosphate (Pi). Then, we conducted Arrhenius analysis of the reaction rates to obtain the thermodynamic parameters for individual reaction steps, that is, ATP binding, ATP hydrolysis, Pi release, and TS reaction. Although all reaction steps exhibited similar activation free energy values, ΔG = 53–56 kJ mol−1, the contributions of the enthalpy (ΔH), and entropy (ΔS) terms were significantly different; the reaction steps that induce tight subunit packing, for example, ATP binding and TS reaction, showed high positive values of both ΔH and ΔS. The results may reflect modulation of the excluded volume as a function of subunit packing tightness at individual reaction steps, leading to a gain or loss in water entropy.  相似文献   

4.
Efflux and Influx of Erythrocyte Water   总被引:1,自引:1,他引:0       下载免费PDF全文
Rabbit erythrocytes were washed in buffered NaCl solutions isotonic with rabbit serum (Δt -0.558°C.) and suspended in buffered NaCl solutions of tonicity equidistant from intracellular tonicity (Δt = -0.558°C. ± 0.112°C.) of varying pH and incubated at varying temperatures. After incubation, the freezing point depression (Δt) was measured on the supernatant. Change in the Δt measured change in the water content of the extracellular solutions—water being withdrawn by erythrocytes (WI) from the hypotonic solutions and added (WE) to the hypertonic solutions. WE was always less than WI and was inversely proportional to the pH in the range 6.5–8.0. WE was significantly increased by lowering the temperature of the cell suspension to 4°C. WI was increased by raising or lowering the pH or raising the temperature of the cell suspension. WE x WIk. WE and WI were affected differently by changes in pH and temperature. It was concluded that WE and WE were probably under different physicochemical control.  相似文献   

5.
When skeletal muscles are activated and mechanically shortened, the force that is produced by the muscle fibers decreases in two phases, marked by two changes in slope (P1 and P2) that happen at specific lengths (L1 and L2). We tested the hypothesis that these force transients are determined by the amount of myosin cross-bridges attached to actin and by changes in cross-bridge strain due to a changing fraction of cross-bridges in the pre-power-stroke state. Three separate experiments were performed, using skinned muscle fibers that were isolated and subsequently (i) activated at different Ca2+ concentrations (pCa2+ 4.5, 5.0, 5.5, 6.0) (n = 13), (ii) activated in the presence of blebbistatin (n = 16), and (iii) activated in the presence of blebbistatin at varying velocities (n = 5). In all experiments, a ramp shortening was imposed (amplitude 10%Lo, velocity 1 Lo•sarcomere length (SL)•s−1), from an initial SL of 2.5 µm (except by the third group, in which velocities ranged from 0.125 to 2.0 Lo•s−1). The values of P1, P2, L1, and L2 did not change with Ca2+ concentrations. Blebbistatin decreased P1, and it did not alter P2, L1, and L2. We developed a mathematical cross-bridge model comprising a load-dependent power-stroke transition and a pre-power-stroke cross-bridge state. The P1 and P2 critical points as well as the critical lengths L1 and L2 were explained qualitatively by the model, and the effects of blebbistatin inhibition on P1 were also predicted. Furthermore, the results of the model suggest that the mechanism by which blebbistatin inhibits force is by interfering with the closing of the myosin upper binding cleft, biasing cross-bridges into a pre-power-stroke state.  相似文献   

6.
The dynamics of amyloid fibrils, including their formation and dissociation, could be of vital importance in life. We studied the kinetics of dissociation of the amyloid fibrils from wild-type hen lysozyme at 25°C in vitro as a function of pressure using Trp fluorescence as a probe. Upon 100-fold dilution of 8 mg ml−1 fibril solution in 80 mM NaCl, pH 2.2, no immediate change occurred in Trp fluorescence, but at pressures of 50–450 MPa the fluorescence intensity decreased rapidly with time (kobs = 0.00193 min−1 at 0.1 MPa, 0.0348 min−1 at 400 MPa). This phenomenon is attributable to the pressure-accelerated dissociation of amyloid fibrils into monomeric hen lysozyme. From the pressure dependence of the rates, which reaches a plateau at ∼450 MPa, we determined the activation volume ΔV0‡ = −32.9 ± 1.7 ml mol(monomer)−1 and the activation compressibility Δκ = −0.0075 ± 0.0006 ml mol(monomer)−1 bar−1 for the dissociation reaction. The negative ΔV0‡ and Δκ values are consistent with the notion that the amyloid fibril from wild-type hen lysozyme is in a high-volume and high-compressibility state, and the transition state for dissociation is coupled with a partial hydration of the fibril.  相似文献   

7.
Rev is an essential HIV-1 regulatory protein which binds to the Rev responsive element (RRE) present within the env gene of HIV-1 RNA genome. This binding facilitates the transport of the RNA to the cytoplasm, which in turn triggers the switch between viral latency and active viral replication. Essential components of this complex have been localized to a minimal arginine rich Rev peptide and stem IIB region of RRE. A synthetic peptide known as RSG-1.2 binds with high binding affinity and specificity to the RRE-IIB than the Rev peptide, however the thermodynamic basis of this specificity has not yet been addressed. The present study aims to probe the thermodynamic origin of this specificity of RSG-1.2 over Rev Peptide for RRE-IIB. The temperature dependent melting studies show that RSG-1.2 binding stabilizes the RRE structure significantly (ΔT m = 4.3°C), in contrast to Rev binding. Interestingly the thermodynamic signatures of the binding have also been found to be different for both the peptides. At pH 7.5, RSG-1.2 binds RRE-IIB with a Ka = 16.2±0.6×107 M−1 where enthalpic change ΔH = −13.9±0.1 kcal/mol is the main driving force with limited unfavorable contribution from entropic change TΔS = −2.8±0.1 kcal/mol. A large part of ΔH may be due to specific stacking between U72 and Arg15. In contrast binding of Rev (Ka = 3.1±0.4×107 M−1) is driven mainly by entropy (ΔH = 0 kcal/mol and TΔS = 10.2±0.2 kcal/mol) which arises from major conformational changes in the RNA upon binding.  相似文献   

8.
In previous papers of this series the temperature-dependent Raman spectra of poly(dA)·poly(dT) and poly(dA–dT)·poly(dA–dT) were used to characterize structurally the melting and premelting transitions in DNAs containing consecutive A·T and alternating A·T/T·A base pairs. Here, we describe procedures for obtaining thermodynamic parameters from the Raman data. The method exploits base-specific and backbone-specific Raman markers to determine separate thermodynamic contributions of A, T and deoxyribosyl-phosphate moieties to premelting and melting transitions. Key findings include the following: (i) Both poly(dA)·poly(dT) and poly(dA–dT)· poly(dA–dT) exhibit robust premelting transitions, due predominantly to backbone conformational changes. (ii) The significant van’t Hoff premelting enthalpies of poly(dA)·poly(dT) [ΔHvHpm = 18.0 ± 1.6 kcal·mol–1 (kilocalories per mole cooperative unit)] and poly(dA–dT)·poly(dA–dT) (ΔHvHpm = 13.4 ± 2.5 kcal·mol–1) differ by an amount (~4.6 kcal·mol–1) estimated as the contribution from three-centered inter-base hydrogen bonding in (dA)n·(dT)n tracts. (iii) The overall stacking free energy of poly(dA)· poly(dT) [–6.88 kcal·molbp–1 (kilocalories per mole base pair)] is greater than that of poly(dA–dT)· poly(dA–dT) (–6.31 kcal·molbp–1). (iv) The difference between stacking free energies of A and T is significant in poly(dA)·poly(dT) (ΔΔGst = 0.8 ± 0.3 kcal· molbp–1), but marginal in poly(dA–dT)·poly(dA–dT) (ΔΔGst = 0.3 ± 0.3 kcal·molbp–1). (v) In poly(dA)· poly(dT), the van’t Hoff parameters for melting of A (ΔHvHA = 407 ± 23 kcal·mol–1, ΔSvHA = 1166 ± 67 cal·°K–1·mol–1, ΔGvH(25°C)A = 60.0 ± 3.2 kcal·mol–1) are clearly distinguished from those of T (ΔHvHT = 185 ± 38 kcal·mol–1, ΔSvHT = 516 ± 109 cal·°K–1·mol–1, ΔGvH(25°C)T = 27.1 ± 5.5 kcal·mol–1). (vi) Similar relative differences are observed in poly(dA–dT)· poly(dA–dT) (ΔHvHA = 333 ± 54 kcal·mol–1, ΔSvHA = 961 ± 157 cal·°K–1·mol–1, ΔGvH(25°C)A = 45.0 ± 7.6 kcal· mol–1; ΔHvHT = 213 ± 30 kcal·mol–1, ΔSvHT = 617 ± 86 cal·°K–1·mol–1, ΔGvH(25°C)T = 29.3 ± 4.9 kcal·mol–1). The methodology employed here distinguishes thermodynamic contributions of base stacking, base pairing and backbone conformational ordering in the molecular mechanism of double-helical B DNA formation.  相似文献   

9.
The ϵ subunit of bacterial FoF1-ATP synthase (FoF1), a rotary motor protein, is known to inhibit the ATP hydrolysis reaction of this enzyme. The inhibitory effect is modulated by the conformation of the C-terminal α-helices of ϵ, and the “extended” but not “hairpin-folded” state is responsible for inhibition. Although the inhibition of ATP hydrolysis by the C-terminal domain of ϵ has been extensively studied, the effect on ATP synthesis is not fully understood. In this study, we generated an Escherichia coli FoF1 (EFoF1) mutant in which the ϵ subunit lacked the C-terminal domain (FoF1ϵΔC), and ATP synthesis driven by acid-base transition (ΔpH) and the K+-valinomycin diffusion potential (ΔΨ) was compared in detail with that of the wild-type enzyme (FoF1ϵWT). The turnover numbers (kcat) of FoF1ϵWT were severalfold lower than those of FoF1ϵΔC. FoF1ϵWT showed higher Michaelis constants (Km). The dependence of the activities of FoF1ϵWT and FoF1ϵΔC on various combinations of ΔpH and ΔΨ was similar, suggesting that the rate-limiting step in ATP synthesis was unaltered by the C-terminal domain of ϵ. Solubilized FoF1ϵWT also showed lower kcat and higher Km values for ATP hydrolysis than the corresponding values of FoF1ϵΔC. These results suggest that the C-terminal domain of the ϵ subunit of EFoF1 slows multiple elementary steps in both the ATP synthesis/hydrolysis reactions by restricting the rotation of the γ subunit.  相似文献   

10.
The goal of this study was to compare the effects of Ca2+ and MgADP activation on force development in skeletal muscles during and after imposed length changes. Single fibres dissected from the rabbit psoas were (i) activated in pCa2+4.5 and pCa2+6.0, or (ii) activated in pCa2+4.5 before and after administration of 10 mM MgADP. Fibres were activated in sarcomere lengths (SL) of 2.65 µm and 2.95 µm, and subsequently stretched or shortened (5%SL at 1.0 SL.s−1) to reach a final SL of 2.80 µm. The kinetics of force during stretch were not altered by pCa2+ or MgADP, but the fast change in the slope of force development (P1) observed during shortening and the corresponding SL extension required to reach the change (L1) were higher in pCa2+6.0 (P1 = 0.22±0.02 Po; L1 = 5.26±0.24 nm.HS.1) than in pCa2+4.5 (P1 = 0.15±0.01 Po; L1 = 4.48±0.25 nm.HS.1). L1 was also increased by MgADP activation during shortening. Force enhancement after stretch was lower in pCa2+4.5 (14.9±5.4%) than in pCa2+6.0 (38.8±7.5%), while force depression after shortening was similar in both Ca2+ concentrations. The stiffness accompanied the force behavior after length changes in all situations. MgADP did not affect the force behavior after length changes, and stiffness did not accompany the changes in force development after stretch. Altogether, these results suggest that the mechanisms of force generation during and after stretch are different from those obtained during and after shortening.  相似文献   

11.
W Gan  J Wu  L Lu  X Xiao  H Huang  F Wang  J Zhu  L Sun  G Liu  Y Pan  H Li  X Lin  Y Chen 《PloS one》2012,7(7):e42010
Dysregulation of the complement system has been linked to pathogenesis of hypertension. However, whether genetic changes of complement factor H (CFH) and its related genes are associated with hypertension is unknown. We genotyped three SNPs in the CFH gene cluster that are closely linked to age-related macular degeneration, namely rs1061170 (Y402H), rs2274700 (A473A) and rs7542235 (CFHR1–3Δ), and tested for their associations with blood pressure and hypertension risk in a population-based cohort including 3,210 unrelated Chinese Hans (50–70 years of age) from Beijing and Shanghai. We found that rs2274700 (A473A) and rs7542235 (CFHR1–3Δ) were both significantly associated with diastolic blood pressure (DBP) (β = 0.632–1.431, P≤0.038) and systolic blood pressure (SBP) (β = 1.567–4.445, P≤0.008), and rs2274700 (A473A) was associated with hypertension risk (OR [95%CI]: 1.175 [1.005–1.373], P = 0.048). Notably, the associations of rs2274700 (A473A) with DBP (P = 2.1×10−3), SBP (P = 8×10−5) and hypertension risk (P = 7.9×10−3) were significant only in the individuals with low CRP levels (<2.0 mg/l), but not in those with CRP levels ≥2.0 mg/l (P≥0.0807) (P for interaction ≤0.0467). However, no significant association between rs1061170 (Y402H) and blood pressure or hypertension risk was observed (P≥0.259). In conclusion, our results suggest that genetic variations in CFH and its related genes may contribute to hypertension risk in Chinese Hans.  相似文献   

12.
In studying ion-selectivity in biomaterials, it is common to study ion-protein interactions within a local neighborhood around the ion. This local system analysis for the S2 site of KcsA, its semisynthetic analog, and valinomycin yields the free energy change in exchanging K+ with Na+ in quantitative agreement with the value obtained by considering ion-interactions with the entire system. But the energetics of ion binding in the local system and in the entire system differ significantly and lead to different conclusions regarding the physical basis of ion selectivity. For configurations sampled from an all-atom simulation, we show that the selectivity free energy can be decomposed into a contribution arising from interactions of the ion with its local neighborhood, ΔWlocal, and a term arising from the field imposed on the ion and the binding site by the rest of the medium, ΔWφ. The local contribution ΔWlocal is numerically close to the actual free energy difference because the field contribution is small. The field contribution is small because of cancellation of inversely related ion-medium and site-medium interactions. Our analysis presents a rigorous foundation for the numerical success of the local system analysis and shows that its implications do not always hold for the entire protein.  相似文献   

13.
The present experiments were designed to evaluate the effects of varying the osmolality of luminal solutions on the antidiuretic hormone (ADH)-independent water and solute permeability properties of isolated rabbit cortical collecting tubules. In the absence of ADH, the osmotic water permeability coefficient (cm s–1) Pfl→b, computed from volume flows from hypotonic lumen to isotonic bath, was 20 ± 4 x 10–4 (SEM); the value of Pfb→l in the absence of ADH, computed from volume flows from isotonic bath to hypertonic lumen, was 88 ± 15 x 10–4 cm s–1. We also measured apparent urea permeability coefficients (cm s–1) from 14C-urea fluxes from lumen to bath (PDDureal→b) and from bath to lumen (PDDureab→l). For hypotonic luminal solutions and isotonic bathing solutions, PDDureal→b was 0.045 ± 0.004 x 10–4 and was unaffected by ADH. The ADH-independent values of PDDureal→b and Pureab→l were, respectively, 0.216 ± 0.022 x 10–4 cm s–1 and 0.033 ± 0.002 x 10–4 cm s–1 for isotonic bathing solutions and luminal solutions made hypertonic with urea, i.e., there was an absolute increase in urea permeability and asymmetry of urea fluxes. Significantly, PDDureal→b did not rise when luminal hypertonicity was produced by sucrose; and, bathing fluid hypertonicity did not alter tubular permeability to water or to urea. We interpret these data to indicate that luminal hypertonicity increased the leakiness of tight junctions to water and urea but not sucrose. Since the value of Pfb→l in the absence of ADH, when tight junctions were open to urea, was approximately half of the value of Pfl→b in the presence of ADH, when tight junctions were closed to urea, we conclude that tight junctions are negligible paracellular shunts for lumen to bath osmosis with ADH. These findings, together with those in the preceding paper, are discussed in terms of a solubility-diffusion model for water permeation in which ADH increases water solubility in luminal plasma membranes.  相似文献   

14.
We have used a stepwise increase in ligand complexity approach to estimate the relative contributions of the nucleotide units of DNA containing 7,8-dihydro-8-oxoguanine (oxoG) to its total affinity for human 8-oxoguanine DNA glycosylase (OGG1) and construct thermodynamic models of the enzyme interaction with cognate and non-cognate DNA. Non-specific OGG1 interactions with 10–13 nt pairs within its DNA-binding cleft provides approximately 5 orders of magnitude of its affinity for DNA (ΔG° approximately −6.7 kcal/mol). The relative contribution of the oxoG unit of DNA (ΔG° approximately −3.3 kcal/mol) together with other specific interactions (ΔG° approximately −0.7 kcal/mol) provide approximately 3 orders of magnitude of the affinity. Formation of the Michaelis complex of OGG1 with the cognate DNA cannot account for the major part of the enzyme specificity, which lies in the kcat term instead; the rate increases by 6–7 orders of magnitude for cognate DNA as compared with non-cognate one. The kcat values for substrates of different sequences correlate with the DNA twist, while the KM values correlate with ΔG° of the DNA fragments surrounding the lesion (position from −6 to +6). The functions for predicting the KM and kcat values for different sequences containing oxoG were found.  相似文献   

15.
Weight-loss interventions generally improve lipid profiles and reduce cardiovascular disease risk, but effects are variable and may depend on genetic factors. We performed a genetic association analysis of data from 2,993 participants in the Diabetes Prevention Program to test the hypotheses that a genetic risk score (GRS) based on deleterious alleles at 32 lipid-associated single-nucleotide polymorphisms modifies the effects of lifestyle and/or metformin interventions on lipid levels and nuclear magnetic resonance (NMR) lipoprotein subfraction size and number. Twenty-three loci previously associated with fasting LDL-C, HDL-C, or triglycerides replicated (P = 0.04–1×10−17). Except for total HDL particles (r = −0.03, P = 0.26), all components of the lipid profile correlated with the GRS (partial |r| = 0.07–0.17, P = 5×10−5–1×10−19). The GRS was associated with higher baseline-adjusted 1-year LDL cholesterol levels (β = +0.87, SEE±0.22 mg/dl/allele, P = 8×10−5, P interaction = 0.02) in the lifestyle intervention group, but not in the placebo (β = +0.20, SEE±0.22 mg/dl/allele, P = 0.35) or metformin (β = −0.03, SEE±0.22 mg/dl/allele, P = 0.90; P interaction = 0.64) groups. Similarly, a higher GRS predicted a greater number of baseline-adjusted small LDL particles at 1 year in the lifestyle intervention arm (β = +0.30, SEE±0.012 ln nmol/L/allele, P = 0.01, P interaction = 0.01) but not in the placebo (β = −0.002, SEE±0.008 ln nmol/L/allele, P = 0.74) or metformin (β = +0.013, SEE±0.008 nmol/L/allele, P = 0.12; P interaction = 0.24) groups. Our findings suggest that a high genetic burden confers an adverse lipid profile and predicts attenuated response in LDL-C levels and small LDL particle number to dietary and physical activity interventions aimed at weight loss.  相似文献   

16.
Dynamic force generation in cardiac muscle, which determines cardiac pumping activity, depends on both the number of sarcomeric cross-bridges and on their cycling kinetics. The Frank–Starling mechanism dictates that cardiac force development increases with increasing cardiac muscle length (corresponding to increased ventricular volume). It is, however, unclear to what extent this increase in cardiac muscle length affects the rate of cross-bridge cycling. Previous studies using permeabilized cardiac preparations, sub-physiological temperatures, or both have obtained conflicting results. Here, we developed a protocol that allowed us to reliably and reproducibly measure the rate of tension redevelopment (ktr; which depends on the rate of cross-bridge cycling) in intact trabeculae at body temperature. Using K+ contractures to induce a tonic level of force, we showed the ktr was slower in rabbit muscle (which contains predominantly β myosin) than in rat muscle (which contains predominantly α myosin). Analyses of ktr in rat muscle at optimal length (Lopt) and 90% of optimal length (L90) revealed that ktr was significantly slower at Lopt (27.7 ± 3.3 and 27.8 ± 3.0 s−1 in duplicate analyses) than at L90 (45.1 ± 7.6 and 47.5 ± 9.2 s−1). We therefore show that ktr can be measured in intact rat and rabbit cardiac trabeculae, and that the ktr decreases when muscles are stretched to their optimal length under near-physiological conditions, indicating that the Frank–Starling mechanism not only increases force but also affects cross-bridge cycling kinetics.  相似文献   

17.
The oxygen-binding characteristics of the three extracellular haemoglobins of brine shrimp (Artemia salina) were studied in vitro by using highly purified preparations. Haemoglobin I is induced last in the development of brine shrimps when functional gills are formed. It has the lowest oxygen affinity (p50 5.34mmHg), an intermediate Bohr effect (ø −0.09 at 20°C) above pH8 and a temperature-sensitivity (ΔH −44.8 to −45.6kJ/mol at pH8–9) comparable with those observed with other invertebrate haemoglobins [Weber & Heidemann (1977) Comp. Biochem. Physiol. A 57, 151–155]. Haemoglobin II, which is the first to be induced, soon after hatching of nauplius larvae, persists generally throughout the whole adult life. It has an intermediate oxygen affinity (p50 3.7mmHg), the highest Bohr effect (ø −0.21 at 20°C) above pH8 and a similar temperature-sensitivity (ΔH −46.0 to −54.8kJ/mol at pH8–9) as haemoglobin I. However, haemoglobin III, which is induced second several hours after the induction of haemoglobin II but disappearing from the haemolymph in the middle of adult life, has the highest oxygen affinity (p50 1.8mmHg), the lowest Bohr effect (ø −0.03 at 20°C) above pH8.5 and a high resistance against temperature variation between 10 and 25°C at pH8.5–9 (ΔH −22.6 to −23.0kJ/mol). At pH7.5–8, haemoglobin III exhibits a similar temperature-sensitivity under 30°C as do other haemoglobins. All three haemoglobins have a rather low co-operativity, with Hill coefficients (h 1.6–1.9 at pH8.5), which are dependent on both pH and temperature. The highest co-operativity was observed at 20°C and pH9 for haemoglobins I and II, whereas it was at 27°C and pH8.5 for haemoglobin III. Thus the oxygen-binding behaviour of haemoglobin III in vitro is significantly different from those of haemoglobins I and II and indicates possibly its specific physiological role in vivo in the adaptive process in the natural environment.  相似文献   

18.
Ellis RH  Hong TD 《Annals of botany》2006,97(5):785-791
Background and Aims The negative logarithmic relationship between orthodox seed longevity and moisture content in hermetic storage is subject to a low-moisture-content limit (mc), but is mc affected by temperature?• Methods Red clover (Trifolium pratense) and alfalfa (Medicago sativa) seeds were stored hermetically at 12 moisture contents (2–15 %) and five temperatures (–20, 30, 40, 50 and 65 °C) for up to 14·5 years, and loss in viability was estimated.• Key Results Viability did not change during 14·5 years hermetic storage at −20 °C with moisture contents from 2·2 to 14·9 % for red clover, or 2·0 to 12·0 % for alfalfa. Negative logarithmic relationships between longevity and moisture contents >mc were detected at 30–65 °C, with discontinuities at low moisture contents; mc varied between 4·0 and 5·4 % (red clover) or 4·2 and 5·5 % (alfalfa), depending upon storage temperature. Within the ranges investigated, a reduction in moisture content below mc at any one temperature had no effect on longevity. Estimates of mc were greater the cooler the temperature, the relationship (P < 0·01) being curvilinear. Above mc, the estimates of CH and CQ (i.e. the temperature term of the seed viability equation) did not differ (P > 0·10) between species, whereas those of KE and CW did (P < 0·001).• Conclusions The low-moisture-content limit to negative logarithmic relationships between seed longevity and moisture content in hermetic storage increased the cooler the storage temperature, by approx. 1·5 % over 35 °C (4·0–4·2 % at 65 °C to 5·4–5·5 % at 30–40 °C) in these species. Further reduction in moisture content was not damaging. The variation in mc implies greater sensitivity of longevity to temperature above, compared with below, mc. This was confirmed (P < 0·005).  相似文献   

19.
This paper reports the effects of amphotericin B, a polyene antibiotic, on the water and nonelectrolyte permeability of optically black, thin lipid membranes formed from sheep red blood cell lipids dissolved in decane. The permeability coefficients for the diffusion of water and nonelectrolytes (PDDi) were estimated from unidirectional tracer fluxes when net water flow (Jw) was zero. Alternatively, an osmotic water permeability coefficient (Pf) was computed from Jw when the two aqueous phases contained unequal solute concentrations. In the absence of amphotericin B, when the membrane solutions contained equimolar amounts of cholesterol and phospholipid, Pf was 22.9 ± 4.6 µsec-1 and P DDHDH2O was 10.8 ± 2.4 µsec-1. Furthermore, PDDi was < 0.05 µsec-1 for urea, glycerol, ribose, arabinose, glucose, and sucrose, and σi, the reflection coefficient of each of these solutes was one. When amphotericin B (10-6 M) was present in the aqueous phases and the membrane solutions contained equimolar amounts of cholesterol and phospholipid, P DDHDH2O was 18.1 ± 2.4 µsec-1; Pf was 549 ± 143 µsec-1 when glucose, sucrose, and raffinose were the aqueous solutes. Concomitantly, PDDi varied inversely, and σi directly, with the effective hydrodynamic radii of the solutes tested. These polyene-dependent phenomena required the presence of cholesterol in the membrane solutions. These data were analyzed in terms of restricted diffusion and filtration through uniform right circular cylinders, and were compatible with the hypothesis that the interactions of amphotericin B with membrane-bound cholesterol result in the formation of pores whose equivalent radii are in the range 7 to 10.5 A.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号