首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The goals of the current study were to determine whether the conductance of Cx40 and Cx40-Cx43 mixed composition junctions was regulated by platelet-derived growth factor (PDGF)-activated signaling cascades, to ascertain the minimum number of Cx43 subunits/connexon required to confer PDGF sensitivity, and to identify specific residues in Cx43 required for this regulation. Junctional and channel conductances (gjand γj, respectively) were determined for Cx40/Cx40, Cx43/Cx43, Cx40/Cx43, and Cx40-Cx43/Cx40-Cx43 mixed composition channels. PDGF had no effect on gjin Cx40/Cx40 pairs, but decreased gjin the remaining combinations by 53% (Cx43/Cx43), 48% (Cx40/Cx43), 41% (4:1 Cx40:Cx43 expression ratio) and 24% (10:1 Cx40:Cx43 expression ratio). Based on the predicted connexin composition of channels in cells expressing Cx40 and Cx43 at either 4:1 or 10:1 ratios, these decreases in gjsuggest that a single subunit of Cx43 is sufficient to confer PDGF sensitivity. The effect of PDGF on gjinvolved a decrease in both γjand Po and required serine 368 in the C-terminus. These data implicate protein kinase C as the mediator of the PDGF effect and strongly suggest that acute regulation of gap junction function by PDGF-activated signaling cascades is conferred by low levels of expression of a sensitive connexin in cells that otherwise express insensitive connexins.  相似文献   

2.
The N-terminal (NT) domain of the connexins forms an essential transjunctional voltage (Vj) sensor and pore-forming domain that when truncated, tagged, or mutated often leads to formation of a nonfunctional channel. The NT domain is relatively conserved among the connexins though the α- and δ-group connexins possess a G2 residue not found in the β- and γ-group connexins. Deletion of the connexin40 G2 residue (Cx40G2Δ) affected the Vj gating, increased the single channel conductance (γj), and decreased the relative K+/Cl? permeability (PK/PCl) ratio of the Cx40 gap junction channel. The conserved α/β-group connexin D2/3 and W3/4 loci are postulated to anchor the NT domain within the pore via hydrophilic and hydrophobic interactions with adjacent connexin T5 and M34 residues. Cx40D3N and D3R mutations produced limited function with progressive reductions in Vj gating and noisy low γj gap junction channels that reduced the γj of wild-type Cx40 channels from 150 pS to < 50 pS when coexpressed. Surprisingly, hydrophobic Cx40 W4F and W4Y substitution mutations were not compatible with function despite their ability to form gap junction plaques. These data are consistent with minor and major contributions of the G2 and D3 residues to the Cx40 channel pore structure, but not with the postulated hydrophobic W4 intermolecular interactions. Our results indicate an absolute requirement for an amphipathic W3/4 residue that is conserved among all α/β/δ/γ-group connexins. We alternatively hypothesize that the connexin D2/3-W3/4 locus interacts with the highly conserved FIFR M1 motif to stabilize the NT domain within the pore.  相似文献   

3.
Connexin40 (Cx40) and connexin43 (Cx43) are co-expressed in the cardiovascular system, yet their ability to form functional heterotypic Cx43/Cx40 gap junctions remains controversial. We paired Cx43 or Cx40 stably-transfected N2a cells to examine the formation and biophysical properties of heterotypic Cx43/Cx40 gap junction channels. Dual whole cell patch clamp recordings demonstrated that Cx43 and Cx40 form functional heterotypic gap junctions with asymmetric transjunctional voltage (Vj) dependent gating properties. The heterotypic Cx43/Cx40 gap junctions exhibited less Vj gating when the Cx40 cell was positive and pronounced gating when negative. Endogenous N2a cell connexin expression levels were 1,000-fold lower than exogenously expressed Cx40 and Cx43 levels, measured by real-time PCR and Western blotting methods, suggestive of heterotypic gap junction formation by exogenous Cx40 and Cx43. Imposing a [KCl] gradient across the heterotypic gap junction modestly diminished the asymmetry of the macroscopic normalized junctional conductance – voltage (Gj-Vj) curve when [KCl] was reduced by 50% on the Cx43 side and greatly exacerbated the Vj gating asymmetries when lowered on the Cx40 side. Pairing wild-type (wt) Cx43 with the Cx40 E9,13K mutant protein produced a nearly symmetrical heterotypic Gj-Vj curve. These studies conclusively demonstrate the ability of Cx40 and Cx43 to form rectifying heterotypic gap junctions, owing primarily to alternate amino-terminal (NT) domain acidic and basic amino acid differences that may play a significant role in the physiology and/or pathology of the cardiovascular tissues including cardiac conduction properties and myoendothelial intercellular communication.  相似文献   

4.
Connexin40 (Cx40) and connexin43 (Cx43) are co-expressed in the cardiovascular system, yet their ability to form functional heterotypic Cx43/Cx40 gap junctions remains controversial. We paired Cx43 or Cx40 stably-transfected N2a cells to examine the formation and biophysical properties of heterotypic Cx43/Cx40 gap junction channels. Dual whole cell patch clamp recordings demonstrated that Cx43 and Cx40 form functional heterotypic gap junctions with asymmetric transjunctional voltage (Vj) dependent gating properties. The heterotypic Cx43/Cx40 gap junctions exhibited less Vj gating when the Cx40 cell was positive and pronounced gating when negative. Endogenous N2a cell connexin expression levels were 1,000-fold lower than exogenously expressed Cx40 and Cx43 levels, measured by real-time PCR and Western blotting methods, suggestive of heterotypic gap junction formation by exogenous Cx40 and Cx43. Imposing a [KCl] gradient across the heterotypic gap junction modestly diminished the asymmetry of the macroscopic normalized junctional conductance – voltage (Gj-Vj) curve when [KCl] was reduced by 50% on the Cx43 side and greatly exacerbated the Vj gating asymmetries when lowered on the Cx40 side. Pairing wild-type (wt) Cx43 with the Cx40 E9,13K mutant protein produced a nearly symmetrical heterotypic Gj-Vj curve. These studies conclusively demonstrate the ability of Cx40 and Cx43 to form rectifying heterotypic gap junctions, owing primarily to alternate amino-terminal (NT) domain acidic and basic amino acid differences that may play a significant role in the physiology and/or pathology of the cardiovascular tissues including cardiac conduction properties and myoendothelial intercellular communication.  相似文献   

5.
Previous studies have shown that the Vj-dependent gating behavior of gap junction channels is altered by CO2 exposure. Vj-dependent channel closure is increased by CO2 in some connexin channels and decreased in others. Since the former type of channels gate on the relatively negative side by Vj (negative gaters) and the latter at the positive side (positive gaters), it has been hypothesized that gating polarity determines the way CO2 affects Vj closure. To test this hypothesis, we have studied the CO2-mediated changes in Vj gating in channels made of Cx32, Cx26, or a Cx32 mutant (Cx32-N2D) in which asparagine (N) at position 2 was replaced with aspartate (D). With exposure to CO2, Cx32 channels (negative gaters) show increased Vj-dependent closure, whereas Cx26 channels (positive gaters) respond in the opposite way to Vj. Additionally, Cx32-N2D channels (positive gaters) show decreased Vj closure with exposure to CO2. The reciprocal Cx26 mutant, Cx26-D2N (negative gater), could not be tested because it did not express functional homotypic channels. The data support the hypothesis that polarity of fast Vj gating determines whether CO2 increases or decreases the Vj dependent closure of gap junction channels.  相似文献   

6.
Three gap junctional proteins have been identified in canine ventricular myocytes: connexin 43 (Cx43), connexin 45 (Cx45), and connexin 40 (Cx40). We have characterized the functional properties of canine Cx45 and examined how Cx45 functionally interacts with Cx43 in Xenopus oocyte pairs. Homotypic pairs expressing Cx45 were well coupled. Heterotypic pairs composed of Cx45 paired with either Cx43 or Cx38 also developed high levels of conductance. Junctional currents in the heterotypic pairs displayed a highly asymmetrical voltage dependence. The kinetics and steady-state voltage dependence of the heterotypic channels more closely resembled those of the Cx45 channels when the Cx45 cRNA-injected cell was relatively negative suggesting that the Cx45 connexon closes for relative negativity at the cytoplasmic end of the channel. We also show that homotypic and heterotypic channels composed of Cx45 and Cx43 exhibit differences in pH i sensitivity. Received: 18 August 1995/Revised: 21 November 1995  相似文献   

7.
Gap junction channels composed of connexins connect cells, allowing intercellular communication. Their cellular assembly involves a unique quality-control pathway. Some connexins [including connexin43 (Cx43) and Cx46] oligomerize in the trans-Golgi network following export of stabilized monomers from the endoplasmic reticulum (ER). In contrast, other connexins (e.g., Cx32) oligomerize early in the secretory pathway. Amino acids near the cytoplasmic aspect of the third transmembrane domain have previously been shown to determine this difference in assembly sites. Here, we characterized the oligomerization of two connexins expressed prominently in the vasculature, Cx37 and Cx40, using constructs containing a C-terminal dilysine-based ER retention/retrieval signal (HKKSL) or treatment with brefeldin A to block ER vesicle trafficking. Both methods led to intracellular retention of connexins, since the cells lacked gap junction plaques. Retention of Cx40 in the ER prevented it from oligomerizing, comparable to Cx43. By contrast, ER-retained Cx37 was partially oligomerized. Replacement of two amino acids near the third transmembrane domain of Cx43 (L152 and R153) with the corresponding amino acids from Cx37 (M152 and G153) resulted in early oligomerization in the ER. Thus, residues that allow Cx37 to oligomerize early in the secretory pathway could restrict its interactions with coexpressed Cx40 or Cx43 by favoring homomeric oligomerization, providing a structural basis for cells to produce gap junction channels with different connexin composition.  相似文献   

8.
Gap junction (GJ) channels provide direct passage for ions and small molecules to be exchanged between neighbouring cells and are crucial for many physiological processes. GJ channels can be gated by transjunctional voltage (known as Vj-gating) and display a wide range of unitary channel conductance (γj), yet the domains responsible for Vj-gating and γj are not fully clear. The first extracellular domain (E1) of several connexins has been shown to line part of their GJ channel pore and play important roles in Vj-gating properties and/or ion permeation selectivity. To test roles of the E1 of Cx50 GJ channels, we generated a chimera, Cx50Cx36E1, where the E1 domain of Cx50 was replaced with that of Cx36, a connexin showing quite distinct Vj-gating and γj from those of Cx50. Detailed characterizations of the chimera and three point mutants in E1 revealed that, although the E1 domain is important in determining γj, the E1 domain of Cx36 is able to effectively function within the context of the Cx50 channel with minor changes in Vj-gating properties, indicating that sequence differences between the E1 domains in Cx36 and Cx50 cannot account for their drastic differences in Vj-gating and γj. Our homology models of the chimera and the E1 mutants revealed that electrostatic properties of the pore-lining residues and their contribution to the electric field in the pore are important factors for the rate of ion permeation of Cx50 and possibly other GJ channels.  相似文献   

9.
The cystic fibrosis transmembrane regulator (CFTR) is a Cl channel known to influence other channels, including connexin (Cx) channels. To study the functional interaction between CFTR and gap junction channels, we coexpressed in Xenopus oocytes CFTR and either Cx45, Cx40, Cx32 or Cx50 and monitored junctional conductance (G j) and its sensitivity to transjunctional voltage (V j) by the dual voltage-clamp method. Application of forskolin induced a Cl current; increased G j approximately 750%, 560%, 64% and 8% in Cx45, Cx40, Cx32 and Cx50, respectively; and decreased sensitivity to V j gating, monitored by a change in the ratio between G j steady state and G j peak (G jSS/G jPK) at the pulse. In oocyte pairs expressing just Cx45 in one oocyte (#1) and both Cx45 and CFTR in the other (#2), with negative pulses applied to oocyte #1 forskolin application still increased G j and decreased the sensitivity to V j gating, indicating that CFTR activation is effective even when it affects only one of the two hemichannels and that the G j and V j changes are not artifacts of decreased membrane resistance in the pulsed oocyte. COOH-terminus truncation reduced the forskolin effect on Cx40 (Cx40TR) but not on Cx32 (Cx32TR) channels. The data suggest a cross-talk between CFTR and a variety of gap junction channels. Cytoskeletal scaffolding proteins and/or other intermediate cytoplasmic proteins are likely to play a role in CFTR-Cx interaction.  相似文献   

10.
Gap junctions are intercellular channels that allow the passage of ions, small molecules, and second messengers that are essential for the coordination of cellular function. They are formed by two hemichannels, each constituted by the oligomerization of six connexins (Cx). Among the 21 different human Cx isoforms, studies have suggested that in the heart, Cx40 and Cx43 can oligomerize to form heteromeric hemichannels. The mechanism of heteromeric channel regulation has not been clearly defined. Tissue ischemia leads to intracellular acidification and closure of Cx43 and Cx40 homomeric channels. However, coexpression of Cx40 and Cx43 in Xenopus oocytes enhances the pH sensitivity of the channel. This phenomenon requires the carboxyl-terminal (CT) part of both connexins. In this study we used different biophysical methods to determine the structure of the Cx40CT and characterize the Cx40CT/Cx43CT interaction. Our results revealed that the Cx40CT is an intrinsically disordered protein similar to the Cx43CT and that the Cx40CT and Cx43CT can interact. Additionally, we have identified an interaction between the Cx40CT and the cytoplasmic loop of Cx40 as well as between the Cx40CT and the cytoplasmic loop of Cx43 (and vice versa). Our studies support the “particle-receptor” model for pH gating of Cx40 and Cx43 gap junction channels and suggest that interactions between cytoplasmic regulatory domains (both homo- and hetero-connexin) could be important for the regulation of heteromeric channels.  相似文献   

11.
《FEBS letters》2014,588(8):1297-1303
The avascular lens of the eye is covered anteriorly by an epithelium containing nucleated, metabolically active cells. This epithelium contains the first lens cells to encounter noxious external stimuli and cells that can develop compensatory or protective responses. Lens epithelial cells express the gap junction proteins, connexin43 (Cx43) and connexin50 (Cx50). Cx43 and Cx50 form gap junction channels and hemichannels with different properties. Although they may form heteromeric hemichannels, Cx43 and Cx50 probably do not form heterotypic channels in the lens. Cx50 channels make their greatest contribution to intercellular communication during the early postnatal period; subsequently, Cx43 becomes the predominant connexin supporting intercellular communication. Although epithelial Cx43 appears dispensable for lens development, Cx50 is critical for epithelial cell proliferation and differentiation. Cx43 and Cx50 hemichannels and gap junction channels are regulated by multiple different agents. Lens epithelial cell connexins contribute to both normal lens physiology and pathology.  相似文献   

12.
13.
Gap junctional coupling among cumulus cells is important for oogenesis since its deficiency in mice leads to impaired folliculogenesis. Multiple connexins (Cx), the subunits of gap junction channels, have been found within ovarian follicles in several species but little is known about the connexins in human follicles. The aim of this study was to determine which connexins contribute to gap junctions in human cumulus cells and to explore the possible relationship between connexin expression and pregnancy outcome from in vitro fertilization (IVF). Cumulus cells were obtained from IVF patients undergoing intra-cytoplasmic sperm injection (ICSI). Connexin expression was examined by RT-PCR and confocal microscopy. Cx43 was quantified by immunoblotting and gap junctional coupling was measured by patch-clamp electrophysiology. All but 5 of 20 connexin mRNAs were detected. Of the connexin proteins detected, Cx43 forms numerous gap junction-like plaques but Cx26, Cx30, Cx30.3, Cx32 and Cx40 appeared to be restricted to the cytoplasm. The strength of gap junctional conductance varied between patients and was significantly and positively correlated with Cx43 level, but neither was correlated with patient age. Interestingly, Cx43 level and intercellular conductance were positively correlated with embryo quality as judged by cleavage rate and morphology, and were significantly higher in patients who became pregnant than in those who did not. Thus, despite the presence of multiple connexins, Cx43 is a major contributor to gap junctions in human cumulus cells and its expression level may influence pregnancy outcome after ICSI.  相似文献   

14.
Gap junctions, composed of proteins from the connexin family, allow for intercellular communication between cells and are important in development and maintenance of cell homeostasis. Phosphorylation has been implicated in the regulation of gap junctional communication at several stages of the cell cycle and the connexin “lifecycle”, such as trafficking, assembly/disassembly, degradation, as well as in the gating of “hemi” channels or intact gap junction channels. This review focuses on how phosphorylation can regulate the early stages of the connexin life cycle through assembly of functional gap junctional channels. The availability of sequences from the human genome databases has indicated that the number of connexins in the gene family is approximately 20, but we know mostly about how connexin43 (Cx43) is regulated. Recent technologies and investigations of interacting proteins have shown that activation of several kinases including protein kinase A, protein kinase C (PKC), p34cdc2/cyclin B kinase, casein kinase 1 (CK1), mitogen-activated protein kinase (MAPK) and pp60src kinase can lead to phosphorylation of the majority of the 21 serine and two of the tyrosine residues in the C-terminal region of Cx43. While many studies have correlated changes in kinase activity with changes in gap junctional communication, further research is needed to directly link specific phosphorylation events with changes in connexin oligomerization and gap junction assembly.  相似文献   

15.
Voltage is an important physiologic regulator of channels formed by the connexin gene family. Connexins are unique among ion channels in that both plasma membrane inserted hemichannels (undocked hemichannels) and intercellular channels (aggregates of which form gap junctions) have important physiological roles. The hemichannel is the fundamental unit of gap junction voltage-gating. Each hemichannel displays two distinct voltage-gating mechanisms that are primarily sensitive to a voltage gradient formed along the length of the channel pore (the transjunctional voltage) rather than sensitivity to the absolute membrane potential (Vm or Vi-o). These transjunctional voltage dependent processes have been termed Vj- or fast-gating and loop- or slow-gating. Understanding the mechanism of voltage-gating, defined as the sequence of voltage-driven transitions that connect open and closed states, first and foremost requires atomic resolution models of the end states. Although ion channels formed by connexins were among the first to be characterized structurally by electron microscopy and x-ray diffraction in the early 1980′s, subsequent progress has been slow. Much of the current understanding of the structure-function relations of connexin channels is based on two crystal structures of Cx26 gap junction channels. Refinement of crystal structure by all-atom molecular dynamics and incorporation of charge changing protein modifications has resulted in an atomic model of the open state that arguably corresponds to the physiologic open state. Obtaining validated atomic models of voltage-dependent closed states is more challenging, as there are currently no methods to solve protein structure while a stable voltage gradient is applied across the length of an oriented channel. It is widely believed that the best approach to solve the atomic structure of a voltage-gated closed ion channel is to apply different but complementary experimental and computational methods and to use the resulting information to derive a consensus atomic structure that is then subjected to rigorous validation. In this paper, we summarize our efforts to obtain and validate atomic models of the open and voltage-driven closed states of undocked connexin hemichannels.This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.  相似文献   

16.
Connexins are gap junction proteins that form aqueous channels to interconnect adjacent cells. Rat osteoblasts express connexin43 (Cx43), which forms functional gap junctions at the cell surface. We have found that ROS 17/2.8 osteosarcoma cells, UMR 106-01 osteosarcoma cells, and primary rat calvarial osteoblastic cells also express another gap junction protein, Cx46. Cx46 is a major component of plasma membrane gap junctions in lens. In contrast, Cx46 expressed by osteoblastic cells was predominantly localized to an intracellular perinuclear compartment, which appeared to be an aspect of the TGN as determined by immunofluorescence colocalization. Hela cells transfected with rat Cx46 cDNA (Hela/Cx46) assembled Cx46 into functional gap junction channels at the cell surface. Both rat lens and Hela/Cx46 cells expressed 53-kD (nonphosphorylated) and 68-kD (phosphorylated) forms of Cx46; however, only the 53-kD form was produced by osteoblasts. To examine connexin assembly, monomers were resolved from oligomers by sucrose gradient velocity sedimentation analysis of 1% Triton X-100–solubilized extracts. While Cx43 was assembled into multimeric complexes, ROS cells contained only the monomer form of Cx46. In contrast, Cx46 expressed by rat lens and Hela/Cx46 cells was assembled into multimers. These studies suggest that assembly and cell surface expression of two closely related connexins were differentially regulated in the same cell. Furthermore, oligomerization may be required for connexin transport from the TGN to the cell surface.  相似文献   

17.
Gap junction channels are gated by a chemical gate and two transjunctional voltage (V j)-sensitive gates: fast and slow. Slow V j gate and chemical gate are believed to be the same. The slow gate closes at the negative side of V j and is mostly inactive without uncouplers or connexin (Cx) mutations. In contrast, our present data indicate otherwise. Oocytes expressing Cx32 were subjected to series of −100 mV V j pulses (12-s duration, 30-s intervals). Both peak (PK) and steady-state (SS) junctional conductances (G j), measured at each pulse, decreased exponentially by 50−60% (tau = ∼1.2 min). G jPK dropped more dramatically, such that G jSS/G jPK increased from 0.4 to 0.6, indicating a drop in V j sensitivity. Less striking effects were obtained with –60 mV pulses. During recovery, G j, measured by applying 20 mV pulses (2-s duration, 30-s intervals), slowly returned to initial values (tau = ∼7 min). With reversal of V j polarity, G jPK briefly increased and G jSS/G jPK decreased, suggesting that V j-dependent hemichannel reopening is faster than hemichannel closing. Similar yet more dramatic results were obtained with COOH-terminus truncated Cx32 (Cx32-D225), a mutant believed to lack fast V j gating. The data indicate that the slow gate of Cx32 is active in the absence of uncouplers or mutations and displays unusual V j behavior. Based on previous evidence for direct calmodulin (CaM) involvement in chemical/slow gating, this may also be CaM-mediated.  相似文献   

18.
We examined the expression and function of gap junctions in two rat osteoblastic cell lines, ROS 17/2.8 and UMR 106-01. The pattern of expression of gap junction proteins in these two cell lines was distinct: ROS cells expressed only connexin43 on their cell surface, while UMR expressed predominantly connexin45. Immunoprecipitation and RNA blot analysis confirmed the relative quantitation of these connexins. Microinjected ROS cells passed Lucifer yellow to many neighboring cells, but UMR cells were poorly coupled by this criterion. Nevertheless, both UMR and ROS cells were electrically coupled, as characterized by the double whole cell patch-clamp technique. These studies suggested that Cx43 in ROS cells mediated cell-cell coupling for both small ions and larger molecules, but Cx45 in UMR cells allowed passage only of small ions. To demonstrate that the expression of different connexins alone accounted for the lack of dye coupling in UMR cells, we assessed dye coupling in UMR cells transfected with either Cx43 or Cx45. The UMR/Cx43 transfectants were highly dye coupled compared with the untransfected UMR cells, but the UMR/Cx45 transfectants demonstrated no increase in dye transfer. These data demonstrate that different gap junction proteins create channels with different molecular permeabilities; they suggest that different connexins permit different types of signalling between cells.  相似文献   

19.
Xin L  Gong XQ  Bai D 《Biophysical journal》2010,99(7):2077-2086
Amino-terminus and carboxyl-terminus of connexins have been proposed to be responsible for the transjunctional voltage-dependent gating (Vj-gating) and the unitary gap junction channel conductance (γj). To better understand the molecular structure(s) determining the Vj-gating properties and the γj of Cx50, we have replaced part of the amino-terminus of mCx50 by the corresponding domain of mCx36 to engineer a chimera Cx50-Cx36N, and attached GFP at the carboxyl-terminus of mCx50 to construct Cx50-GFP. The dual whole-cell patch-clamp technique was used to test the resulting gap junction channel properties in N2A cells. The Cx50-Cx36N gap junction channel lowered the sensitivity of steady-state junctional conductance to Vj (Gj/Vj relationship), slowed Vj-gating kinetics, and reduced γj as compared to Cx50 channel. Cx50-GFP gap junction channel showed similar Vj-gating properties and γj to Cx50 channel. We further characterized a mutation, Cx50N9R, where the Asn (N) at the ninth position of Cx50 was replaced by the corresponding Arg (R) at Cx36. The Gj/Vj relationship of Cx50N9R channel was significantly changed; most strikingly, the macroscopic residual conductance (Gmin) was near zero. Moreover, the single Cx50N9R channel only displayed one open state (γj = 132 ± 4 pS), and no substate could be detected. Our data suggest that the NT of Cx50 is critical for both the Vj-gating and the γj, and the introduction of a positively charged Arg at the ninth position reduced the Gmin with a correlated disappearance of the substate at the single channel level.  相似文献   

20.
Homomeric gap junction channels are composed solely of oneconnexin type, whereas heterotypic forms contain two homomeric hemichannels but the six identical connexins of each are different fromeach other. A heteromeric gap junction channel is one that containsdifferent connexins within either or both hemichannels. The existenceof heteromeric forms has been suggested, and many cell types are knownto coexpress connexins. To determine if coexpressed connexins wouldform heteromers, we cotransfected rat connexin43 (rCx43) and humanconnexin37 (hCx37) into a cell line normally devoid of any connexinexpression and used dual whole cell patch clamp to compare the observedgap junction channel activity with that seen in cells transfected onlywith rCx43 or hCx37. We also cocultured cells transfected with hCx37 orrCx43, in which one population was tagged with a fluorescent marker tomonitor heterotypic channel activity. The cotransfected cells possessedchannel types unlike the homotypic forms of rCx43 or hCx37 or theheterotypic forms. In addition, the noninstantaneous transjunctionalconductance-transjunctional voltage(Gj/Vj)relationship for cotransfected cell pairs showed a large range ofvariability that was unlike that of the homotypic or heterotypic form.The heterotypic cell pairs displayed asymmetric voltage dependence. Theresults from the heteromeric cell pairs are inconsistent with summedbehavior of two independent homotypic populations or mixed populationsof homotypic and heterotypic channels types. TheGj/Vjdata imply that the connexin-to-connexin interactions are significantlyaltered in cotransfected cell pairs relative to the homotypic andheterotypic forms. Heteromeric channels are a population of channelswhose characteristics could well impact differently from theirhomotypic counterparts with regard to multicellular coordinatedresponses.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号