首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calculations using different quantum mechanical methods including semiempirical (MNDO,AM1 and PM3), ab initio (RHF and MP2 calculations using the 6-311G and 6-311++G** basis sets), and density functional theory (LSDA, BP, MIXBP and B3LYP, i.e., B3LYP/6-311+G**//B3LYP/6-31G*) have been performed on the thermal fragmentation of cyclopropanone to ethylene and carbon monoxide. All RHF calculations predict a concerted single step mechanism for this conversion. The estimated activation energies vary from 34.4 to 54.6 kcal·mol-1, mainly localized around 37±2 kcal·mol-1, depending on the method. Whereas the calculated RHF reaction energies also varied from 14.5 to -33.3 kcal·mol-1, the B3LYP/6-311+G**//B3LYP/6-31G* method predicts the experimental value (-17.7 kcal·mol-1) within experimental uncertainties. Remarkably, semiempirical AM1 and PM3 methods and simple DFT calculations, LSDA, predict comparable results to the more advanced methods. UHF ab initio calculations predict the same single step mechanism, whereas a multistep biradical mechanism with an unrealistically low activation energy is favored by the semiempirical methods. Structures of the activated complex of the single step mechanism, estimated by different methods, are very similar and consistent with a nonlinear cheletropic [2s + 2a] reaction, as predicted by the orbital symmetry rules and earlier EHT calculations.Electronic Supplementary Material available.  相似文献   

2.
Production and activity of extracellular lipase from Luteibacter sp.   总被引:1,自引:0,他引:1  
Microbial lipases are widely used in industrial applications due to their versatility, and the characterization of new lipase-producing microorganisms could provide new sources of these enzymes, with different specificities and better activities. In this context, we have improved lipase production by Luteibacter sp. by using basal medium supplemented with 2 % olive oil, a pH of 6 and a growth temperature of 37 °C. The enzyme extraction process with the addition of 0.25 % Tween 80 increased lipase activity. Implementation of these modifications increased lipase activity by approximately 430 %. The lipase activities produced in the culture supernatant (LCS) and extracted with Tween 80 (LCST80) were characterized. Both extracts hydrolyzed ρ-nitrophenyl (ρNP) esters with different acyl chain lengths, with a preference for short acyl lengths, and had optimum activity at 45 °C. The LCS was stable at acidic and alkaline pH, but LCST80 was only stable at alkaline pH. Methanol, SDS, Triton X-100, EDTA, and EGTA did not affect lipase activity, while divalent cations (Ca2+, Zn2+, Mg2+) - with the exception of Co2+— increased lipase activity. Both extracts showed transesterification activity on ρNP ester substrates, and both were able to hydrolyze different natural lipids. The characterization of lipase produced by Luteibacter sp. introduces this recently described genus as a new source of lipases with great biotechnological potential.  相似文献   

3.
A new lipase which enantioselectively hydrolyzes (±)-trans-3-(4-methoxyphenyl)glycidic acid methyl ester [(±)-MPGM], a key intermediate in the synthesis of diltiazem hydrochloride, was purified from the culture supernatant of Serratia marcescens Sr41 8000. The apparent kinetic constants (Km, Vmax) for hydrolysis of (2S,3R)-MPGM [(+)-MPGM] were 350 mM and 1.7 × 10−3 mol/min/mg protein in a toluene-water (1:1) emulsion system. The lipase did not attack (2R,3S)-MPGM [(−)-MPGM], and (−)-MPGM acted as a competitive inhibitor. The molecular mass was estimated to be 62,000 ± 2,000 from SDS-PAGE. The lipase preferentially hydrolyzed (2S,3R)-3-phenylglycidic acid esters, but did not hydrolyze cinnamic acid esters. The lipase released glycerol and fatty acid from olive oil, and the optimum pH and temperature for hydrolysis of olive oil were pH 8 and 45°C, respectively. The lipase was inhibited by Co2+, Ni2+, Fe2+, Fe3+ and EDTA, and activated by Ca2+, Li+ and SDS. It was presumed that the lipase was a metalloenzyme containing approximately one gram atom of calcium per molecular mass of 62,000. The lipase selectively hydrolyzed the 1,3 ester of triglycerides. Sequencing of the N-terminal amino acids revealed that this lipase was distinct from other known lipases.  相似文献   

4.
Two types of extracellular lipases (I and II) from Trichosporon fermentans WU-C12 were purified by acetone precipitation and successive chromatographies on Butyl-Toyopearl 650 M, Toyopearl HW-55F and Q-Sepharose FF. The molecular weight of lipase I was 53 kDa by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and 160 kDa by gel filtration, while that of lipase II was 55 kDa by SDS-PAGE and 60 kDa by gel filtration. For the hydrolysis of olive oil, the optimum pH and temperature of both the lipases were 5.5 and 35°C, respectively. The lipases showed stable activities after incubation at 30°C for 24 h in a pH range from 4.0 to 8.0. The thermostability of lipase I for 30 min at a reaction pH of 5.5 was up to 40°C, while that of lipase II under the same conditions was up to 50°C. Both lipases could hydrolyze the 1-, 2-, and 3-positions of triolein, and cleave all three ester bonds, regardless of the position in the triglyceride.  相似文献   

5.
Summary The kinetics of Na+ and K+ transport across the membrane of large unilamellar vesicles (LUV) were determined at two pH's when transport was induced by (221)C10-cryptand (diaza-1,10-decyl-5-pentaoxa-4,7,13,16,21-bicyclo [8.8.5.] tricosane) at various temperatures, and by nonactin at 25°C and (222)C10-cryptand at 20 and 25°C. The rate of Na+ and K+ transport by (221)C10 saturated with the cation and carrier concentrations. Transport was noncooperative and exhibited selectivity for Na+ with respect to K+. The apparent affinity of (221)C10 for Na+ was higher and less pH-dependent than that for K+, and seven times higher than that of (222)C10 for K+ ions (20.5vs. 1.7 kcal·mole). The efficiency of (221)C10 transport of Na+ was pH-and carrier concentration-dependent, and was similar to that of nonactin; its activation energy was similar to that for (222)C10 transport of K+ (35.5 and 29.7 kcal · mole–1, respectively). The reaction orders in cationn(S) and in carrierm(M), respectively, increased and decreased as the temperature rose, and were both independent of carrier or cation concentrations; in most cases they varied slightly with the pH.n(S) varied with the cation at pH 8.7 and with the carrier for Na+ transport only, whilem(M) always depended on the type of cation and carrier. Results are discussed in terms of the structural, physico-chemical and electrical characteristics of carriers and complexes.  相似文献   

6.
Bacterial lipases from family I.1 and I.2 catalyze the hydrolysis of triacylglycerol between 25–45°C and are used extensively as biocatalysts. The lipase from Proteus mirabilis belongs to the Proteus/psychrophilic subfamily of lipase family I.1 and is a promising catalyst for biodiesel production because it can tolerate high amounts of water in the reaction. Here we present the crystal structure of the Proteus mirabilis lipase, a member of the Proteus/psychrophilic subfamily of I.1lipases. The structure of the Proteus mirabilis lipase was solved in the absence and presence of a bound phosphonate inhibitor. Unexpectedly, both the apo and inhibitor bound forms of P. mirabilis lipase were found to be in a closed conformation. The structure reveals a unique oxyanion hole and a wide active site that is solvent accessible even in the closed conformation. A distinct mechanism for Ca2+ coordination may explain how these lipases can fold without specific chaperones.  相似文献   

7.
A novel lipase gene from an organic solvent degradable strain Pseudomonas fluorescens JCM5963 was cloned, sequenced, and overexpressed as an N-terminus His-tag fusion protein in E. coli. The alignment of amino acid sequences revealed that the protein contained a lipase motif and shared a medium or high similarity with lipases from other Pseudomonas strains. It could be defined as a member of subfamily I.1 lipase. Most of the recombinant proteins expressed as enzymatically active aggregates soluble in 20 mM Tris–HCl buffer (pH 8.0) containing sodium deoxycholate are remarkably different from most subfamily I.1 and I.2 members of Pseudomonas lipases expressed as inactive inclusion body formerly described in E. coli. The recombinant lipase (rPFL) was purified to homogeneity by Ni-NTA affinity chromatography and Sephacryl S-200 gel filtration chromatography. The purified lipase was stable in broad ranges of temperatures and pH values, with the optimal temperature and pH value being 55 °C and 9.0, respectively. Its activity was found to increase in the presence of metal ions such as Ca2+, Sn2+ and some non-ionic surfactants. In addition, rPFL was activated by and remained stable in a series of water-miscible organic solvents solutions and highly tolerant to some water-immiscible organic solvents. These features render this novel lipase attraction for biotechnological applications in the field of organic synthesis and detergent additives.  相似文献   

8.
An extracellular lipase produced by the sapstaining fungus Ophiostoma piceae 387N in a liquid medium was purified to homogeneity using ammonium sulphate and acetone fractionation, hydrophobic interaction and anion exchange chromatography. The overall purification based on lipase activity was 5200-fold with a yield of 26%. The molecular mass of the lipase was 35kDa, as determined by sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE), and 37 kDa, as measured by size exclusion chromatography. The purified enzyme was resolved as three bands at pI values of 4.3, 4.1 and 3.8 in IEF (isoelectric focusing) gels. Lipolytic stain demonstrated that all three bands were lipolytically active. The N-terminal amino acid sequence was determined asD1-V2-S3-V4-T5-T6-T7-D8-I9-D10-A11-L12-A13-F14-F15-T16-Q17-W18-A19-G20 . The lipase was shown to be glycosylated, containing 10.1% carbohydrate. The lipase was stable between pH 4 and pH 8 and at temperatures below 40°C. The lipase activity had a pH optimum of approximately 5 and a temperature optimum of 30°C. The enzyme activity was not influenced by N-ethylmaleimide, -mercaptoethanol or dithiothreitol, was enhanced by Ca2+ or Mn2+, but was severely inhibited by Hg2+, Fe3+, butyric acid, caproic acid, diethyl pyrocarbonate, and diethyl p-nitrophenyl phosphate. The lipase hydrolysed mainly triglycerides, although some activity was measured on waxes and cholesteryl esters. It belongs to a group of 1 (3) positional specific lipases. It showed little activity for substrates with short chain fatty acids (C2–C6), but demonstrated high specificity for substrates with intermediate and long chain fatty acid residues (C10–C18).  相似文献   

9.
An extracellular lipase from Nomuraea rileyi MJ was purified 23.9-fold with 1.69% yield by ammonium sulfate precipitation followed by Sephacryl S-100 HR column chromatography. By mass spectrometry and SDS-polyacrylamide gel electrophoresis, the molecular weight of the homogenous lipase was 81 kDa. The N-terminal sequence was determined as LeuSerValGluGlnThrLysLeuSerLysLeuAlaTyrAsnAsp and it showed no homology to sequences of known lipases. The optimum pH and temperature for activity were 8.0 and 35 °C, respectively. The enzyme was stable in the pH range 7.0-9.0 and at 15-35 °C for 1 h. Higher activity was observed in the presence of surfactants, Na+, NH4+ ions, NaN3 and ethylenediaminetetraacetic acid (EDTA), while Co2+ and Cu2+ ions, cysteine and dithiothreitol (DTT) strongly inhibited activity. The purified lipase hydrolyzed both synthetic and natural triglycerides with maximum activity for trilaurin and coconut oil, respectively. It also hydrolyzed esters of p-nitrophenol (pNP) with highest activity for p-nitrophenyl caprate (pNPCA). The purified lipase was found to promote N. rileyi spore germination in vitro in that germination reached 98% in conidial suspensions containing purified lipase at 2.75 U. Moreover, it enhanced toxicity of N. rileyi toward Spodoptera litura larvae with mortality via topical application reaching 63.3% at 4-10 days post-treatment which calculated to be 2.7 times higher than the mortality obtained using conidial suspensions alone.  相似文献   

10.
Lipase’s thermostability and organic solvent tolerance are two crucial properties that enable it to function as a biocatalyst. The present study examined the characteristics of two recombinant thermostable lipases (Lk2, Lk3) based on transesterification activity. Conversion of C12-C18 methyl ester with paranitrophenol was investigated in various organic solvent. Both lipases exhibited activity on difference carbon chain length (C12 - C18, C18:1, C18:2) of substrates. The activity of Lk2 was higher in each of substrate compared with that of Lk3. Experimental findings showed that the best substrates for Lk2 and Lk3 are C18:1 and C18:2 respectively, in agreement with the computational analysis. The activity of both enzymes prefers on nonpolar solvent. On nonpolar solvent the enzymes are able to keep its native folding shown by the value of radius gyration, solvent–enzyme interaction and orientation of triad catalytic residues. Lk3 appeared to be more thermostable, with maximum activity at 55°C. The presence of Fe3+ increased the activity of Lk2 and Lk3. However, the activity of both enzymes were dramatically decreased by the present of Ca2+ despite of the enzymes belong to family I.1 lipase known as calcium dependent enzyme. Molecular analysis on His loop of Lk2 and Lk3 on the present of Ca2+ showed that there were shifting on the orientation of catalytic triad residues. All the data suggest that Lk2 and Lk3 are novel lipase on the family I.1 and both lipase available as a biocatalyst candidate.  相似文献   

11.
Summary High concentration production of an extracellular enzyme, lipase, was achieved by a fed-batch culture of Pseudomonas fluorescens. During the cultivation, temperature, pH and dissolved oxygen concentration wwre maintained at 23°C, 6.5 and 2–5 ppm, respectively. Olive oil was used as a carbon source for microbial growth. To produce lipase effectively the specific feed rate of olive oil had to be maintained in a range of 0.04–0.06 (g oil) · (g dry cell)-1 · h-1. The CO2 evolution rate was monitored to estimate the requirement of olive oil. The ratio of feed rate of olive oil to the CO2 evolution rate was varied in the range of 20–60 g oil/mol CO2. The higher value of the ratio accelerated microbial growth, but did not favour lipase production. Once the high cell concentration of 60 g/l had been achieved, the ratio was changed from 50 to 30 g oil/mol CO2 to accelerate the lipase production. By this CO2-dependent method a very high activity of lipase, 1980 units/ml, was obtained. Both the productivity and yield of lipase were prominently increased compared with a conventional batch culture.  相似文献   

12.
Thermostable and organic solvent-tolerant enzymes have significant potential in a wide range of synthetic reactions in industry due to their inherent stability at high temperatures and their ability to endure harsh organic solvents. In this study, a novel gene encoding a true lipase was isolated by construction of a genomic DNA library of thermophilic Aneurinibacillus thermoaerophilus strain HZ into Escherichia coli plasmid vector. Sequence analysis revealed that HZ lipase had 62% identity to putative lipase from Bacillus pseudomycoides. The closely characterized lipases to the HZ lipase gene are from thermostable Bacillus and Geobacillus lipases belonging to the subfamily I.5 with ≤ 57% identity. The amino acid sequence analysis of HZ lipase determined a conserved pentapeptide containing the active serine, GHSMG and a Ca2+-binding motif, GCYGSD in the enzyme. Protein structure modeling showed that HZ lipase consisted of an α/β hydrolase fold and a lid domain. Protein sequence alignment, conserved regions analysis, clustal distance matrix and amino acid composition illustrated differences between HZ lipase and other thermostable lipases. Phylogenetic analysis revealed that this lipase represented a new subfamily of family I of bacterial true lipases, classified as family I.9. The HZ lipase was expressed under promoter Plac using IPTG and was characterized. The recombinant enzyme showed optimal activity at 65°C and retained ≥ 97% activity after incubation at 50°C for 1h. The HZ lipase was stable in various polar and non-polar organic solvents.  相似文献   

13.
Body temperature, oxygen consumption, respiratory and cardiac activity and body mass loss were measured in six females and four males of the subterranean Zambian mole rat Cryptomys sp. (karyotype 2 n=68), at ambient temperatures between 10 and 35°C. Mean body temperature ranged between 36.1 and 33.2°C at ambient temperatures of 32.5–10°C and was lower in females (32.7°C) than in males (33.9°C) at ambient temperatures of 10°C but dit not differ at thermoneutrality (32.5°C). Except for body temperature, mean values of all other parameters were lowest at thermoneutrality. Mean basal oxygen consumption of 0.76 ml O2·g-1· h-1 was significantly lower than expected according to allometric equations and was different in the two sexes (females: 0.82 ml O2·g-1·h-1, males: 0.68 ml O2·g1·h-1) but was not correlated with body mass within the sexes. Basal respiratory rate of 74·min-1 (females: 66·min1, males: 87·min-1) and basal heart rate of 200·min-1 (females: 190·min-1, males: 216·min-1) were almost 30% lower than predicted, and the calculated thermal conductance of 0.144 ml O2·g-1·h1·°C-1 (females; 0.153 ml O2·g-1·h-1·°C-1, males: 0.131 ml O2·g-1·h-1·°C-1) was significantly higher than expected. The body mass loss in resting mole rats of 8.6–14.1%·day-1 was high and in percentages higher in females than in males. Oxygen consumption and body mass loss as well as respiratory and cardiac activity increased at higher and lower than thermoneutral temperatures. The regulatory increase in O2 demand below thermoneutrality was mainly saturated by increasing tidal volume but at ambient temperatures <15°C, the additional oxygen consumption was regulated by increasing frequency with slightly decreasing tidal volume. Likewise, the additional blood transport capacity was mainly effected by an increasing stroke volume while there was only a slight increase of heart frequency. In an additional field study, temperatures and humidity in different burrow systems have been determined and compared to environmental conditions above ground. Constant temperatures in the nest area 70 cm below ground between 26 and 28°C facilitate low resting metabolic rates, and high relative humidity minimizes evaporative water loss but both cause thermoregulatory problems such as overheating while digging. In 13–16 cm deep foraging tunnels, temperature fluctuations were higher following the above ground fluctuations with a time lag. Dominant breeding females had remarkably low body temperatures of 31.5–32.3°C at ambient temperatures of 20°C and appeared to be torpid. This reversible hypothermy and particular social structure involving division of labour are discussed as a strategy reducing energy expenditure in these eusocial subterranean animals with high foraging costs.Abbreviations BMR basal metabolic rate - br breath - C thermal conductance - HR neart rate - LD light/dark - M b body mass - MR metabolic rate - OP oxygen pulse - PCO2 partial pressure of carbon dioxide - PO2 partial pressure of oxygen - RMR resting metabolic rate - RR respiratory rate - T a ambient temperature - T b body temperature - TNZ thermal neural zone - O2 oxygen consumption  相似文献   

14.
A lipase from a newly isolated thermophilicRhizopus rhizopodiformis   总被引:1,自引:0,他引:1  
Two strains ofRhizopus rhizopodiformis that produced lipases in broth culture were isolated. Maximum lipase production (23 U/ml) was obtained after 72 h culture. Both the crude lipases were stable at 50°C for 30 min and at 45°C for 24 h. Maltose was the best carbon source and peptone the best nitrogen source for the production of lipases. Only glycerol and lecithin stimulated lipase production further.  相似文献   

15.
The enzymatic activity (expressed as milliunits per milligram total proteins) of three intestinal brush-border membrane enzymes, leucine aminopeptidase, alkaline phosphatase and maltase, measured over a range of temperatures between 1.5 and 37 °C, has been found to be much higher in the Antarctic fish Pagothenia bernacchii than in the temperate fish Anguilla anguilla. To explain this experimental observation the apparent Michaelis-Menten constant, the maximal velocity, the activation energy values and the thermal stability of these three enzymes were measured. The apparent Michaelis-Menten constant values of leucine amino peptidase and alkaline phosphatase were different in the intestine mucosal homogenate of the two fish at each measured temperature (from a minimum of 2.5 to a maximum of 37 °C). However, the values found at 2.5 °C for the Antarctic species and 15 °C for the eel where comparable. Furthermore, its value was unchanged in eel intestine apical membranes, both in the presence and without enzyme lipid microenvironment. While the maximal enzymatic activities of the leucine aminopeptidase and maltase did not decrease without their enzyme lipid microenvironment, produced by treatment with Triton X-100, the impairment of alkaline phosphatase maximal activity cannot be significantly differentiated from a non-specific inhibitory effect of the detergent. The activation energy values of leucine amino peptidase, alkaline phosphatase and maltase were lower in the Antarctic fish (11.7, 5.6 and 11.8 kcal·mol-1, respectively) than in the eel (13.6, 7.6 and 13.1 kcal·mol-1, respectively). The thermal stability of alkaline phosphatase and maltase is different in Pagothenia bernacchii and Anguilla anguilla intestinal homogenate.Abbreviations BBM brush border membrane - E a activation energy - EGTA ethyleneglycol-bis-(-amino ethylether)N, N-tetraacetic acid - HEPES 2-[4-(2-hydroxyethyl)-1-piperazinyl]-ethane sulphonic acid - Kmapp apparent Michaelis-Menten constant - PMSF phenylmethyl-sulphonyl fluoride - TRIS TRIS (hydroxymethyl)-aminomethane  相似文献   

16.
Oxygen consumption in Tardigrada from Spitsbergen   总被引:1,自引:0,他引:1  
Summary Oxygen consumption was measured in seven species of Tardigrada (Doryphoribius smreczynskii, Diphascon spitzbergensis, Macrobiotus islandicus, M. echinogenitus, M. harmswothi, M. spectabilis and M. dispar) from the Spitzbergen tundar. The metabolic rate was measured at 2°, 6° and 10°C. At 6°C it ranged from 0.055 (D. smreczynskii) to 0.101 mm3·10-3/g·10-6h (M. harmswothi). In D. smreczynskii the phenomenon of relative thermal independence was observed at a temperature range of 2°–6°C. The dependence of oxygen consumption (R in mm3·10-3·individ-1·h-1) on body weight (W in g·10-6) for the latter species at 2°C was R=0.088·W0.82.  相似文献   

17.
The fungus Cunninghamella verticillata was selected from isolates of oil-mill waste as a potent lipase producer as determined by the Rhodamine-B plate method. The lipase was purified from C. verticillata by ammonium sulphate fractionation, ion exchange chromatography and gel filtration. The purified enzyme was formed from a monomeric protein with molecular masses of 49 and 42 kDa by SDS–PAGE and gel filtration, respectively. The optimum pH at 40 °C was 7.5 and the optimum temperature at pH 7.5 was 40 °C. The enzyme was stable between a pH range of 7.5 and 9.0 at 30 °C for 24 h. The enzyme activity was strongly inhibited by AgNO3, NiCl2, HgCl2, CdCl2 and EDTA. However, the presence of Ca2+, Mn2+ and Ba2+ ions enhanced the activity of the enzyme. The activity of purified lipase with respect to pH, temperature and salt concentration was optimized using a Box–Behnken design experiment. A polynomial regression model used in analysing this data, showed a significant lack of fitness. Therefore, quadratic terms were incorporated in the regression model through variables. Maximum lipase activity (100%) was observed with 2 mM CaCl2, (pH 7.5) at a temperature of 40 °C. Regression co-efficient correlation was calculated as 0.9956.  相似文献   

18.
Photosynthetic activity, in leaf slices and isolated thylakoids, was examined at 25° C after preincubation of the slices at either 25° C or 4° C at a moderate photon flux density (PFD) of 450 mol·m–2·s–1, or at 4° C in the dark. The plants used wereSpinacia oleracea L.,Cucumis sativus L. andNerium oleander L. which was acclimated to growth at 20° C or 45° C. The plants were grown at a PFD of 550 mol·m–2·s–1. Photosynthesis, measured as CO2-dependent O2 evolution, was not inhibited in leaf slices from any plant after preincubation at 25° C at a moderate PFD or at 4° C in the dark. However, exposure to 4° C at a moderate PFD induced an inhibition of CO2-dependent O2 evolution within 1 h inC. sativus, a chilling-sensitive plant, and in 45° C-grownN. oleander. The inhibition in these plants after 5 h reached 80% and 40%, respectively, and was independent of the CO2 concentration but was reduced at O2 concentrations of less than 3%. Methyl-viologen-dependent O2 exchange in leaf slices from these plants was not inhibited. There was no photoxidation of chlorophyll, in isolated thylakoids, or any inhibition of electron transport at photosystem (PS)II, PSI or through both photosystems which would account for the inhibition of photosynthesis. The conditions which inhibit photosynthesis in chilling-sensitive plants do not cause inhibition inS. oleracea, a chilling-insensitive plant, or in 20° C-grownN. oleander. The CO2-dependent photosynthesis, measured at 5° C, was reduced to about 3% of that recorded at 25° C in chilling-sensitive plants but only to about 30% in the chilling-insensitive plants. Methyl-viologen-dependent O2 exchange, measured at 5° C, was greater than 25% of the activity at 25° C in all the plants. The results indicate that the mechanism of the chilling-induced inhibition of photosynthesis does not involve damage to PSII. That inhibition of photosynthesis is observed only in the chilling-sensitive plants indicates it is related, in some way, to the disproportionate decrease in photosynthetic activity in these plants at chilling temperatures.Abbreviations Chl chlorophyll - DPIPH reduced form of 2,6-dichlorophenol-indophenol - DMQ 2,5-dimethyl-p-benzoquinone - MV methyl viologen - 20°-oleander Nerium oleander grown at 20° C - 45°-oleander N. oleander grown at 45° C - PFD photon flux density (photon fluence rate) - PSI and PSII photosystem I and II, respectively  相似文献   

19.
Some properties of wheat germ lipase were determined with a fluorometric assay of enzymatic cleavage converting the nonfluorescent 4-methyl umbelliferone butyrate (4-MUB) to the highly fluorescent 4-methyl umbelliferone (4-MU). Optimum reaction conditions were attained at buffer pH 7·5 and temperature 30°. Lineweaver-Burk plots were linear. Relative cation combination effectiveness as reaction activators was Ca + Mg + K > Ca + Mg + K + Na > Ca + Mg + Na > Ca + Mg > Mg > Ca, with no reaction effects of K, Na, and K + Na without Ca or Mg. Highly significant inhibitors of lipase reaction were CN, aflatoxin, Cu2+, Fe3+, S2−, and EDTA.  相似文献   

20.
Summary The aim of these investigations was to study the conditions for the production of extracellular lipases fromPenicillium roqueforti S-86, which was isolated from a commercial sample of roqueforti chese type. As carbon sources there have been used the following compounds: 2% glucose, fructose and sucrosel 1% and 2% butterfat and 2% olive oil. Maximal amount of lipases was produced after six days of incubation grown in the medium with 2% of glucose, initial pH of medium 4.0 at 27°C. Cells ofPenicillium roqueforti grown in the presence of bacto-peptone instead of (NH4)2SO4, as nitrogen source, synthesized maximum quantity of lipases after four days of incubation.The effect of temperature, pH, as well as mono, be and three valent cations: Na+, K+, Ca++, Mn++, Mg++ and Fe+++ on lipase activity was followed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号