首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycerol kinase deficiency (GKD) is an X-linked recessive trait that occurs in association with congenital adrenal hypoplasia (AH) and developmental delay with or without congenital dystrophic myopathy. Several such patients have recently been reported to have cytological deletions of chromosome region Xp21 and/or of DNA markers that map near the locus for Duchenne muscular dystrophy (DMD) in band Xp21. We have examined the initial family reported in the literature and, using prometaphase chromosome studies and Southern blot analysis with 13 different DNA probes derived from band Xp21, have found no deletions within this region of the X chromosome. When DNA samples from six other unrelated affected males were analyzed, four of them were found to have different-size deletions within Xp21. Thus, the form of GKD associated with AH and dystrophic myopathy exhibits significant genetic heterogeneity at the DNA level. No deletions were detected in two patients with isolated GK deficiency. Comparison of our molecular studies of unrelated patients with deletions of DNA segments allows us to define the region of Xp21 (between probes J-Bir and L1.4) that most likely contains the genes for GKD and AH. This location is distal to the DMD locus. The patients with progressive muscular dystrophy tended to have larger deletions that include markers known to derive from the DMD locus, while GKD/AH/dystrophic-myopathy patients without current evidence of deletion seemed to have a milder, nonprogressive form of congenital myopathy.  相似文献   

2.
The ionophore A23187 causes an increase in the Ca content of human erythrocytes and a Ca-dependent increase in K efflux (Gardos effect). These changes are associated with a reduction in osmotic fragility and cell size. Treatment of erythrocytes from patients with Duchenne muscular dystrophy with A23187 results in 45Ca uptake comparable to that of erythrocytes from control subjects. However, the reduction in osmotic fragility and K content observed in dystrophic erythrocytes is twofold greater than in control erythrocytes. These results indicate that an alteration in the regulation of erythrocyte membrane function by Ca occurs in Duchenne muscular dystrophy. This alteration may be responsible for other changes in erythrocyte membrane properties observed in Duchenne muscular dystrophy.  相似文献   

3.
We synthesized a peptide designated R8 (amino acid residues 1157-1201) based on the primary structure presumed from the nucleotide sequence of the cDNA clone from the gene for Duchenne muscular dystrophy. Antibody to the synthetic R8 generated by immunization of rabbits was tested on human and mouse skeletal muscle by Western blotting analysis. The antibody reacted with a component of the 400K dystrophin of normal human and mouse skeletal muscles, but not with components of the muscles of Duchenne muscular dystrophy patients and mdx mice. Thus we established that this peptide sequence is in fact missing in the protein product 'dystrophin' encoded by the DMD gene. The antibody may prove useful for the diagnosis of the Duchenne types of muscular dystrophy.  相似文献   

4.
The myodystrophy (myd) mutation arose spontaneously and has an autosomal recessive mode of inheritance. Homozygous mutant mice display a severe, progressive muscular dystrophy. Using a positional cloning approach, we identified the causative mutation in myd as a deletion within the Large gene, which encodes a putative glycosyltransferase with two predicted catalytic domains. By immunoblotting, the alpha-subunit of dystroglycan, a key muscle membrane protein, is abnormal in myd mice. This aberrant protein might represent altered glycosylation of the protein and contribute to the muscular dystrophy phenotype. Our results are discussed in the light of recent reports describing mutations in other glycosyltransferase genes in several forms of human muscular dystrophy.  相似文献   

5.
Garvey SM  Rajan C  Lerner AP  Frankel WN  Cox GA 《Genomics》2002,79(2):146-149
Muscular dystrophy with myositis (mdm) is a recessive mouse mutation that causes severe and progressive muscular degeneration. Here we report the identification of the mdm mutation as a complex rearrangement that includes a deletion and a LINE insertion in the titin (Ttn) gene. Mutant allele-specific splicing results in the deletion of 83 amino acids from the N2A region of TTN, a domain thought to bind calpain-3 (CAPN3) the product of the human limb-girdle muscular dystrophy type 2A (LGMD2A) gene. The Ttn(mdm) mutant mouse may serve as a model for human tibial muscular dystrophy, which maps to the TTN locus at 2q31 and shows a secondary reduction of CAPN3 similar to that observed in mdm skeletal muscle. This is the first demonstration that a mutation in Ttn is associated with muscular dystrophy and provides a novel animal model to test for functional interactions between TTN and CAPN3.  相似文献   

6.
Myotonic dystrophy type 1 (DM1) is an autosomal dominant disorder of muscular dystrophy characterized by muscle weakness and wasting. DM1 is caused by expansion of CTG repeats in the 3′-untranslated region (3′-UTR) of DM protein kinase (DMPK) gene. Since CUG-repeat RNA transcribed from the expansion of CTG repeats traps RNA-binding proteins that regulate alternative splicing, several abnormalities of alternative splicing are detected in DM1, and the abnormal splicing of important genes results in the appearance of symptoms. In this study, we identify two abnormal splicing events for actinin-associated LIM protein 3 (PDLIM3/ALP) and fibronectin 1 (FN1) in the skeletal muscles of DM1 patients. From the analysis of the abnormal PDLIM3 splicing, we propose that ZASP-like motif-deficient PDLIM3 causes the muscular symptoms in DM. PDLIM3 binds α-actinin 2 in the Z-discs of muscle, and the ZASP-like motif is needed for this interaction. Moreover, in adult humans, PDLIM3 expression is highest in skeletal muscles, and PDLIM3 splicing in skeletal muscles is regulated during human development.  相似文献   

7.
8.
Plasma nitric oxide (NO) levels in Duchenne muscular dystrophy (DMD) patients were significantly lower than those observed in both healthy controls and in patients with other neuromuscular disorders. The correlation between NO level and ejection fraction was significant (r=–0.384, p=0.0391) in the DMD group. Disruption of NO systems may contribute to the development of muscular dystrophy and have implications for therapeutic strategies.  相似文献   

9.
The dystrophin-glycoprotein complex (DGC) is a multisubunit complex that connects the cytoskeleton of a muscle fiber to its surrounding extracellular matrix. Mutations in the DGC disrupt the complex and lead to muscular dystrophy. There are a few naturally occurring animal models of DGC-associated muscular dystrophy (e.g. the dystrophin-deficient mdx mouse, dystrophic golden retriever dog, HFMD cat and the delta-sarcoglycan-deficient BIO 14.6 cardiomyopathic hamster) that share common genetic protein abnormalities similar to those of the human disease. However, the naturally occurring animal models only partially resemble human disease. In addition, no naturally occurring mouse models associated with loss of other DGC components are available. This has encouraged the generation of genetically engineered mouse models for DGC-linked muscular dystrophy. Not only have analyses of these mice led to a significant improvement in our understanding of the pathogenetic mechanisms for the development of muscular dystrophy, but they will also be immensely valuable tools for the development of novel therapeutic approaches for these incapacitating diseases.  相似文献   

10.
Abdominal muscles are selectively active in normal subjects during stress and may increase the potential energy for inspiration by reducing the end-expiratory lung volume (EELV). We hypothesized that a similar process would occur in subjects with myotonic muscular dystrophy (MMD), but would be less effective, because of to their weakness and altered chest wall mechanics. Fine-wire electromyography (EMG) of the transversus abdominis (TA), internal oblique (IO), external oblique, and rectus abdominis was recorded in 10 MMD and 10 control subjects. EMG activity, respiratory inductive plethysmography, and gastric pressure were recorded during static pressure measurement and at increasing levels of inspiratory resistance breathing. EELV was reduced and chest wall motion was synchronous only in controls. Although the TA and IO were selectively recruited in both groups, EMG activity of the MMD group was twice that of controls at the same inspiratory pressure. In MMD subjects with mildly reduced forced vital capacity, significant differences can be seen in abdominal muscle recruitment, wall motion, work of breathing, and ventilatory parameters.  相似文献   

11.
Deletions giving rise to Duchenne muscular dystrophy (DMD) and the less severe Becker muscular dystrophy (BMD) occur in the same large gene on the short arm of the human X chromosome. We present a molecular mechanism to explain the clinical difference in severity between DMD and BMD patients who bear partial deletions of the same gene locus. The model is based on the breakpoints of intragenic deletions and their effect on the translation of triplet codons into amino acids of the protein product. Deletions identified in three DMD patients are shown to shift the translational open reading frame (ORF) of triplet codons for amino acids, and each deletion is predicted to result in a truncated, abnormal protein product. Deletions identified in three BMD patients are shown to maintain the translational ORF for amino acids and predict a shorter, lower molecular weight protein. The smaller protein product is presumed to be semifunctional and to result in a milder clinical phenotype. The same ORF mechanism is also applicable to potential 5' and 3' intron splice mutations and their effect on protein production and clinical phenotype.  相似文献   

12.
Short stature is a well-recognized feature of Duchenne muscular dystrophy, whilst it has been reported rarely in Becker muscular dystrophy (BMD). Here we report two brothers with BMD, who exhibited a very different growth pattern. Whereas in the short brother (-2.2 SDS) molecular investigation revealed a G367A mutation in the short stature homeobox containing (SHOX) gene located in the Xp22.3 region, no abnormality was found in the brother with normal height (-0.1 SDS). Our data suggest that abnormal growth observed in a boy with BMD may be related to an additional genetic alteration, already known as correlated with short stature.  相似文献   

13.
Myotonic dystrophy: molecular windows on a complex etiology.   总被引:4,自引:0,他引:4       下载免费PDF全文
Myotonic dystrophy (DM) is the most common form of adult onset muscular dystrophy, with an incidence of approximately 1 in 8500 adults. DM is caused by an expanded number of trinucleotide repeats in the 3'-untranslated region (UTR) of a cAMP-dependent protein kinase (DM protein kinase, DMPK). Although a large number of transgenic animals have been generated with different gene constructions and knock-outs, none of them faithfully recapitulates the multisystemic and often severe phenotype seen in human patients. The transgenic data suggest that myotonic dystrophy is not caused simply by a biochemical deficiency or abnormality in the DM kinase gene product. Emerging studies suggest that two novel pathogenetic mechanisms may play a role in the disease: the expanded repeats appear to cause haploinsufficiency of a neighboring homeobox gene and also abnormal DMPK RNA appears to have a detrimental effect on RNA homeostasis. The complex, multisystemic phenotype may reflect an underlying multifaceted molecular pathophysiology: the facial dysmorphology may be due to pattern defects caused by haploinsufficiency of the homeobox gene, while the muscle disease and endocrine abnormalities may be due to both altered RNA metabolism and deficiency of the cAMP DMPK protein.  相似文献   

14.
The myodystrophy (myd) mutation arose spontaneously and has an autosomal recessive mode of inheritance. Homozygous mutant mice display a severe, progressive muscular dystrophy. Using a positional cloning approach, we identified the causative mutation in myd as a deletion within the Large gene, which encodes a putative glycosyltransferase with two predicted catalytic domains. By immunoblotting, the α-subunit of dystroglycan, a key muscle membrane protein, is abnormal in myd mice. This aberrant protein might represent altered glycosylation of the protein and contribute to the muscular dystrophy phenotype. Our results are discussed in the light of recent reports describing mutations in other glycosyltransferase genes in several forms of human muscular dystrophy.  相似文献   

15.
Intracellular free calcium concentration [( Ca2+]i) of human peripheral blood lymphocytes was determined by fluorescence spectroscopic measurements with quin2 in patients with different types of muscular dystrophy and in controls. The [Ca2+]i level in lymphocytes showed a significant increase in adult type (facioscapulohumeral and limb-girdle) muscular dystrophies, while it showed a decrease in Duchenne dystrophy as compared to the values of age- and sex-matched controls. The data obtained suggest an alteration in the effectiveness of the calcium pump in lymphocytes and may represent a sign of generalized membrane damage in these hereditary muscle diseases.  相似文献   

16.
Congenital muscular dystrophy (CMD) is a clinically and genetically heterogeneous group of inherited muscle disorders. In patients, muscle weakness is usually present at or shortly after birth and is progressive in nature. Merosin deficient congenital muscular dystrophy (MDC1A) is a form of CMD caused by a defect in the laminin-α2 gene (LAMA2). Laminin-α2 is an extracellular matrix protein that interacts with the dystrophin-dystroglycan (DGC) complex in membranes providing stability to muscle fibers. In an N-ethyl-N-nitrosourea mutagenesis screen to develop zebrafish models of neuromuscular diseases, we identified a mutant fish that exhibits severe muscular dystrophy early in development. Genetic mapping identified a splice site mutation in the lama2 gene. This splice site is highly conserved in humans and this mutation results in mis-splicing of RNA and a loss of protein function. Homozygous lama2 mutant zebrafish, designated lama2(cl501/cl501), exhibited reduced motor function and progressive degeneration of skeletal muscles and died at 8-15 days post fertilization. The skeletal muscles exhibited damaged myosepta and detachment of myofibers in the affected fish. Laminin-α2 deficiency also resulted in growth defects in the brain and eye of the mutant fish. This laminin-α2 deficient mutant fish represents a novel disease model to develop therapies for modulating splicing defects in congenital muscular dystrophies and to restore the muscle function in human patients with CMD.  相似文献   

17.
Golden retriever muscular dystrophy (GRMD) provides the best animal model for characterizing the disease progress of the human disorder, Duchenne muscular dystrophy (DMD). The purpose of this study was to determine steroid hormone concentration profiles in healthy golden retriever dogs (control group - CtGR) versus GRMD-gene carrier (CaGR) and affected female dogs (AfCR). Therefore, a sensitive and specific analytical method was developed and validated to determine the estradiol, progesterone, cortisol, and testosterone levels in the canine serum by isotope dilution liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). To more accurately understand the dynamic nature of the serum steroid profile, the fluctuating levels of these four steroid hormones over the estrous cycle were compared across the three experimental groups using a multivariate statistical analysis. The concentration profiles of estradiol, cortisol, progesterone, and testosterone revealed a characteristic pattern for each studied group at each specific estrous phase. Additionally, several important changes in the serum concentrations of cortisol and estradiol in the CaGR and AfCR groups seem to be correlated with the status and progression of the muscular dystrophy. A comprehensive and quantitative monitoring of steroid profiles throughout the estrous cycle of normal and GRMD dogs were achieved. Significant differences in these profiles were observed between GRMD and healthy animals, most notably for estradiol. These findings contribute to a better understanding of both dog reproduction and the muscular dystrophy pathology. Our data open new venues for hormonal behavior studies in dystrophinopathies and that may affect the quality of life of DMD patients.  相似文献   

18.
Aderem A 《Cell》2002,108(1):5-8
Characterization of the mechanisms underlying various types of muscular dystrophy has been an outstanding triumph of molecular biology. Increasing clarification of the aberrant cellular processes responsible for these conditions may ultimately permit the development of effective means for molecular intervention, allowing correction of the abnormal cellular physiology that results in the dystrophic phenotype.  相似文献   

19.
Our previous studies revealed that the genetic locus for chicken muscular dystrophy of abnormal muscle (AM) mapped to chromosome 2q, and that the region showed conserved synteny with human chromosome 8q11-24.3. In the current study, we mapped the chicken orthologues of genes from human chromosome 8q11-24 in order to identify the responsible gene. Polymorphisms in the chicken orthologues were identified in the parents of the resource family. Twenty-three genes and expressed sequence tags (ESTs) were mapped to chicken chromosome 2 by linkage analysis. The detailed comparative map shows a high conservation of synteny between chicken chromosome 2q and human chromosome 8q. The AM locus was mapped between [inositol(myo)-1(or4)-monophosphatase 1] (IMPA1) gene and [core-binding factor, runt domain, alpha-subunit 2; translocated to 1; cyclin D-related] (CBFA2T1) gene. The genes located between IMPA1 and CBFA2T1 are the most likely candidates for chicken muscular dystrophy.  相似文献   

20.
A class of recessive lethal zebrafish mutations has been identified in which normal skeletal muscle differentiation is followed by a tissue-specific degeneration that is reminiscent of the human muscular dystrophies. Here, we show that one of these mutations, sapje, disrupts the zebrafish orthologue of the X-linked human Duchenne muscular dystrophy (DMD) gene. Mutations in this locus cause Duchenne or Becker muscular dystrophies in human patients and are thought to result in a dystrophic pathology through disconnecting the cytoskeleton from the extracellular matrix in skeletal muscle by reducing the level of dystrophin protein at the sarcolemma. This is thought to allow tearing of this membrane, which in turn leads to cell death. Surprisingly, we have found that the progressive muscle degeneration phenotype of sapje mutant zebrafish embryos is caused by the failure of embryonic muscle end attachments. Although a role for dystrophin in maintaining vertebrate myotendinous junctions (MTJs) has been postulated previously and MTJ structural abnormalities have been identified in the Dystrophin-deficient mdx mouse model, in vivo evidence of pathology based on muscle attachment failure has thus far been lacking. This zebrafish mutation may therefore provide a model for a novel pathological mechanism of Duchenne muscular dystrophy and other muscle diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号