首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Two fungi, Phyllactinia guttata and Erysiphe pulchra were identified as the pathogens of powdery mildew of flowering dogwood ( Cornus florida ). The objective of this research was to identify and distinguish the two fungi by developing species-specific primers. The internal transcribed spacer (ITS) universal primers and a series of species-specific primers designed from the ITS regions were used to evaluate and validate the two fungi causing powdery mildew in dogwood. Four primer pairs showed specificity to P. guttata and three to E. pulchra . These species-specific primer pairs can be used as molecular markers to provide diagnostic tools for detection and differentiation of the two powdery mildew pathogens in flowering dogwood.  相似文献   

2.
The predacious mites, Typhlodromus mangiferus Zaher and El-Borolossy and Typhlodromips swirskii (Athias-Henriot), reproduced successfully on mango powdery mildew Oidium mangiferae Berthet in absence or presence of spider mite prey Oligonichus mangiferus (Rahman and Sapra) under laboratory conditions of 25 ± 1°C and 60–65% R.H. Adult female of both predators consumed protonymphs of O. mangiferus at different experimental densities. The consumption rate increased with increasing prey densities up to 25 protonymphs/female/day and decreased significantly at 35 and 50 protonymphs/female/day for the two predatory mites. Addition of powdery mildew conidia to each prey density significantly reduced consumption of spider mites at 35 and 50 protonymphs/female/day. Mean eggs/female/day by T. swirskii and T. mangiferus was 0.30 and 0.72 when reared on powdery mildew conidia compared with 1.64 and 1.57 when fed on powdery mildew and tetranychid prey, respectively. This increase in reproduction would have compensated the reduction in protonymph prey consumption due to the presence of mildew conidia. Mite–mildew interactions are discussed.  相似文献   

3.
Sweet basil (Ocimum basilicum) is an annual herb crop grown in polyethylene‐covered structures in Israel. It is Israel's leading herb crop, grown in warm regions of the country. Downy mildew (caused by Peronospora belbahrii) is a severe disease in Israel and in many other crop‐growing regions worldwide. Experiments were carried out to identify potential climate‐management techniques for suppression of this disease on basil in non‐heated greenhouses. Disease severity was evaluated under commercial‐like conditions in three experiments, with 8–10 walk‐in tunnels at each location. Pathogen inoculum was introduced into all walk‐in tunnels. Regression analysis was performed between the disease values and air temperature, relative humidity (RH) and soil temperature. Downy mildew severity was negatively related to high (>25°C) air temperature, RH in the range of 65–85% and high (>21°C) soil temperature. The increase in air temperature did not result in a significant increase in leaf temperature; canopy surface median temperatures only reached 30°C. Symptomless plants from relatively warmer tunnels (peak temperatures of 45–48°C) that were transferred to conditions that promote downy mildew (22 ± 2°C, RH > 95%) became severely diseased, showing sporulation of P. belbahrii, suggesting that infection occurred but at the high temperatures symptom expression/tissue colonisation was suppressed. Pot experiments in which aerial and subterranean plant organs were differentially heated revealed that treating the roots with a high temperature (26–31°C), similar to the soil temperatures in the warmer greenhouses, while maintaining the upper plant parts at ambient temperature (20°C), suppresses canopy downy mildew. The effect lasted for 1–2 weeks after the plants were removed from the heated soil treatments and maintained under optimal conditions for pathogen development. Furthermore, oospores were found in the symptomatic leaves. Oospores are minimally affected by high temperature, and therefore the high temperature presumably did not affect pathogen survival. In conclusion, the effect of high greenhouse temperature on basil downy mildew may not result from a direct negative effect of high temperature on the pathogen but from an indirect high‐temperature effect on the host, rendering it less susceptible to pathogen development.  相似文献   

4.
The effect of temperature and light conditions (spectral quality, intensity and photoperiod) on germination, development and conidiation of tomato powdery mildew (Oidium neolycopersici) on the highly susceptible tomato cv. Amateur were studied. Conidia germinated across the whole range of tested temperatures (10–35°C); however, at the end‐point temperatures, germination was strongly limited. At temperatures slightly lower than optimum (20–25°C), mycelial development and time of appearance of the first conidiophores was delayed. Conidiation occurred within the range of 15–25°C, however was most intense between 20–25°C. Pathogen development was also markedly influenced by the light conditions. Conidiation and mycelium development was greatest at light intensities of approximately 60 μmol/m2 per second. At lower intensities, pathogen development was delayed, and in the dark, conidiation was completely inhibited. A dark period of 24 h after inoculation had no stimulatory effect on later mycelium development. However, 12 h of light after inoculation, followed by continuous dark, resulted in delayed mycelium development and total restriction of pathogen conidiation (evaluated 8 days postinoculation). When a longer dark period (4 days) was followed by normal photoperiod (12 h/12 h light/dark), mycelium development accelerated and the pathogen sporulated normally. When only inoculated leaf was covered with aluminium foil while whole plant was placed in photoperiod 12 h/12 h, the intensive mycelium development and slight subsequent sporulation on covered leaf was recorded.  相似文献   

5.
Abstract Cold-acclimated stems of red-osier dogwood (Cornus sericea L.) were sampled in midwinter and early spring and subjected to the following low temperature treatments: (a)0 →?40 → 0°C; (b) 0 →?40 →? 196 → 0°C; (c) 0 →?40 →?196 →?269 →?196 → 0°C; (d) 0 →?40 →?269 →?196 → 0°C; (e) 0 →?196 → 0°C; (f) 0 →?269 →?196 →0°C. The cortical parenchyma cells of the outer stem layers survived exposure to ?269°C when pre-frozen to ?40°C and either transferred directly to ?269°C or to ?196°C and then to ?269°C (treatments c and d). Acclimated stems transferred to a greenhouse (22°C) 2 weeks prior to the low temperature treatments deacclimated and were not able to survive freezing to ?10°C. Cortical cells of stem samples taken in March, near the time when dogwood naturally deacclimates, survived ?196°C (treatment b), but not ?269°C (treatment cord). Thus, the freezing tolerance of dogwood varies seasonally from near ?10°C to below ?269°C.  相似文献   

6.
In the 1990s during wet seasons a new disease causing brown leaf spots on lettuce (Lactuca sativa) was found for the first time in many lettuce‐growing areas of Austria and Germany. The causal agent, a new pathogenic species called Septoria birgitae, may be responsible for total crop loss. To study how temperature, inoculum density and leaf wetness period influence disease incidence and severity of leaf spot on lettuce caused by S. birgitae, we carried out in vivo experiments in growth chambers and in the field. Additionally, we evaluated the relevance of infected plant debris acting as a primary inoculum source in soil for subsequent crops. S. birgitae produces spores over a wide temperature range between 5°C and 30°C, and can infect plants at temperatures between 10°C and 30°C, with an optimum between 20°C and 30°C. Spores of S. birgitae at a density of at least 103 conidia mL–1 are essential for disease outbreak on lettuce. Because leaf wetness is crucial for releasing conidia from pycnidia, we studied the impact of leaf wetness duration on disease development under various temperature conditions. For relevant leaf spot disease development on lettuce in vivo, a leaf wetness duration of at least 24 h and temperatures higher than 10°C were necessary. Leaf spot disease development in the field required several leaf wetness periods longer than 20 h at approximately 15°C at the beginning of crop cultivation. Incorporating S. birgitae infected plant debris in soil as a primary inoculum was not relevant for leaf spot disease outbreak in the next year. However, in cases of continuous cropping of lettuce on the same field and in the same season, Septoria‐infected lettuce debris may become more relevant.  相似文献   

7.
Virus-free individuals of the plant-hopper Javesella pellucida (Fabr.) infected plants with European wheat striate mosaic virus (EWSMV) after being injected at 5° C. with extracts of either plants or hoppers, but extracts of hoppers provided a better inoculum. Hoppers were unable to infect plants until at least 8 days at 20–25° C. after they were injected, and nymphs fed on infected plants similarly required 8 days before they gave infective extracts. Few hoppers survived more than a week after injection with untreated extracts of hoppers or with material sedimented from them by centrifuging the extracts at 8000g, but 60–70% survived injection with purer virus preparations. Injection of the virus seemed harmless, because as many hoppers survived CO2 anaesthesis + injection, whether or not they later infected plants, as survived anaesthesis without injection. Attempts to determine the properties of the virus in vitro gave inconsistent results, but virus from hoppers was still infective after 10 min. at 30° C, 36 hr. at 5° C, precipitation at pH 4.0, storage for several months at -15° C, or at a dilution equivalent to 0.0014 g. hopper/ml. The best extraction medium contained 0.2 M-Na2HPO4+ ascorbic acid + 0.01 M-DIECA at pH 7.0–7.3. In sucrose density-gradients, EWSMV sedimented more slowly than tobacco mosaic virus. No specific particle with which infectivity could be correlated was seen by electron microscopy.  相似文献   

8.
Unformulated conidia of Beauveria bassiana were stored at five different temperatures (0°, 10°, 20°, 30° and 40°C) at six different relative humidities (RH) (0, 33, 53, 75, 85 and 98%). Conidial viabilities and virulence against third instar larvae of Helicoverpa armigera were determined over a 24‐month period. Conidia survived longest at lower temperatures (0–20°C) and lower RH levels (0–53% RH). At higher temperatures (30–40°C) conidia did not survive. When the temperature was decreased from 30°C to 0°C, at nearly all RH levels the longevity of conidia increased. Conidia remained virulent for third instar larvae of H. armigera under favourable storage conditions for 24 months.  相似文献   

9.
Grey (Areolate) mildew (Ramularia areola) and Alternaria blight (Alternaria macrospora) are two important fungal foliar diseases affecting cotton in India. Both the diseases are polycyclic in nature. The primary inoculum for grey mildew is through conidia or ascospores from infected debris and/or perennial cottons and the secondary spread is through primarily infected leaves. Whereas for Alternaria blight the spread is initially from seed-borne inoculum (in Gossypium herbaceum and Gossypium arboreum cottons) and/or crop debris and the secondary spread is from sporulating lesions on older leaves. Both R. areola and A. macrospora require a temperature regime of 20–30?°C with prolonged high humidity (>80%) and frequent rains for infection and disease development. However, it has been observed that cool weather coupled with prolonged dewy periods in the absence of rains has also been found conducive for the development of both the diseases. So, suitable epidemiological tools and models are required to predict the disease development, spread and to design suitable management practices.  相似文献   

10.
The pH, temperature and inoculum ratio for the production of β‐galactosidase by Kluyveromyces marxianus CDB 002 were optimized using sugar‐cane molasses (100 g/l) in a lactose‐free medium. The temperature optimum was evaluated in the range from 28–37 °C. Lactase production was initiated after substrate consumption indicating a reversible enzyme inhibition or catabolic repression. The specific enzyme activity after 45 h was between 456.3 U/g cell mass (37 °C) and 733.3 U/g (34 °C), whereas the highest volumetric activity was obtained at 30 °C: 21.8 U/ml. This is generally consistent with results from other authors that used whey as a carbon source. Ethanol as a by‐product reached its maximum concentration after 10–14 h (31.1–40.5 g/l), but was completely consumed afterwards. A pH of 5.5 without further control gave the best production rate for lactase (484.4 U/l × h). In this process, the pH was stable during cell growth at 5.5 and then went up to pH 7.2 after 45 h. At a fixed pH of 5.5 or 6.5, the production rates achieved 313.3 U/l × h and 233.3 U/ l × h, respectively. These results differed from those of other authors, who suggested a fixed pH at 7.0 using whey as a carbon source. There were no significant differences between inoculum ratios of 1% [v/v] and 10% [v/v] so that 1% is the preferable ratio as it is cheaper. Yeast extract (10 g/l) and peptone (20 g/l) were used as the vitamin and nitrogen source, respectively, for the studies of temperature and pH. These were substituted by corn steep liquor (100 g/l) for inoculum ratio experiments. Production of lactase using sugar cane molasses in a lactose‐free medium gave better enzyme productivity rates than obtained by other authors using whey. The optimum conditions for β‐galactosidase synthesis were a temperature of 30–34 °C and an inoculum ratio of 1% [v/v], an initial pH of 5.5 without any further control or a control of 5.5 during cell growth. Then the pH was raised up to 7.  相似文献   

11.
The infrared (IR), vibrational circular dichroism (VCD), and electronic circular dichroism (ECD) spectra of short cationic sequential peptides (L ‐Lys‐L ‐Ala‐L ‐Ala)n (n = 1, 2, and 3) were measured over a range of temperatures (20–90 °C) in aqueous solution at near‐neutral pH values in order to investigate their solution conformations and thermally induced conformational changes. VCD spectra of all three oligopeptides measured in the amide I′ region indicate the presence of extended helical polyproline II (PPII)‐like conformation at room temperature. UV‐ECD spectra confirmed this conclusion. Thus, the oligopeptides adopt a PPII‐like conformation, independent of the length of the peptide chain. However, the optimized dihedral angles ? and ψ are within the range ?82 to ?107° and 143–154°, respectively, and differ from the canonical PPII values. At elevated temperatures, the observed intensity and bandshape variations in the VCD and ECD spectra show that the PPII‐like conformation of the Lys‐Ala‐Ala sequence is still preferred, being in equilibrium with an unordered conformer at near‐neutral pH values within the range of temperatures from 20 to 90 °C. This finding was obtained from analysis of the temperature‐dependent spectra using the singular value decomposition method. The study presents KAA‐containing oligopeptides as conformationally stable models of biologically important cationic peptides and proteins. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
Investigations were conducted under greenhouse and field conditions to evaluate the effects of potential biocontrol agents (BCAs) and soluble silicon (Si) on powdery mildew of zucchini caused by Podosphaera xanthii. Five BCAs were applied as foliar sprays to zucchini leaves and Si was drenched weekly into the rhizosphere of these plants.In the greenhouse, all BCAs provided significant control of powdery mildew with fungal isolates, reducing disease levels by up to 90%. Si alone reduced powdery mildew by as much as 35% and improved the efficacy of most of the biocontrol agents. Higher disease pressure reduced the efficacy of Si on powdery mildew but did not affect the performance of the BCAs. In the field, a disease reduction of 10–70% was achieved by BCAs and Si. Lower temperatures and high humidity ranges were suitable for optimal performances. The efficacy of the bacterial BCA, Serratia marcescens – B15 and silicon diminished at temperatures above 25 °C. The fungal BCAs (Clonostachys rosea – EH and Trichothecium roseum – H20) were better suited to higher temperatures (25–30 °C) and were tolerant of low RH values. Application of K2SiO2 to zucchini roots increased the level of Si in the leaves, which was responsible for suppression of the disease.  相似文献   

13.
The impact of combined environmental factors, such as temperature and CO2, on the control of the powdery mildew of zucchini, caused by Podosphaera xanthii, and of different control measures has been studied on plants grown in phytotrons. Five experimental trials were conducted, and the powdery mildew severity of both treated and untreated zucchini plants was found to be significantly affected by the interaction between temperature (three different regimes: 16–18; 18–22; 22–26°C), CO2 (two concentrations: 400–450 and 800–850 ppm) and the treatments. However, at the end of the trials, the efficacy of all the products was not affected by the different, tested environmental conditions. Sulphur consistently provided the highest disease control (75%–85% efficacy). Among the resistant inducers that were tested, calcium oxide was the most effective, in terms of powdery mildew control under all the conditions tested in phytotrons, reducing disease severity from 46% to 61%. Foliar applications of phosphite (14%–28% efficacy), Ampelomyces quisqualis (12%–23% efficacy) and potassium silicate (13%–24% efficacy) only slightly reduced the disease severity for all the tested temperature regimes and CO2 concentrations, compared to the untreated control. The results obtained under our experimental conditions show that a possible increase in CO2 concentration and temperature, which is expected for the next few years, should not influence the efficacy of the tested resistance inducers or of sulphur against powdery mildew on zucchini. Moreover, the suppressive effect of calcium oxide is in light of its possible use in greenhouses for zucchini powdery mildew control under 400–450 ppm of CO2 and under enriched condition of 800–850 ppm of CO2.  相似文献   

14.
Seeds with a water‐impermeable seed coat and a physiologically dormant embryo are classified as having combinational dormancy. Seeds of Sicyos angulatus (burcucumber) have been clearly shown to have a water‐impermeable seed coat (physical dormancy [PY]). The primary aim of the present study was to confirm (or not) that physiological dormancy (PD) is also present in seeds of S. angulatus. The highest germination of scarified fresh (38%) and 3‐month dry‐stored (36%) seeds occurred at 35/20°C. The rate (speed) of germination was faster in scarified dry‐stored seeds than in scarified fresh seeds. Removal of the seed coat, but leaving the membrane surrounding the embryo intact, increased germination of both fresh and dry‐stored seeds to > 85% at 35/20°C. Germination (80–100%) of excised embryos (both seed coat and membrane removed) occurred at 15/6, 25/15 and 35/20°C and reached 95–100% after 4 days of incubation at 25/15 and 35/20°C. Dry storage (after‐ripening) caused an increase in the germination percentage of scarified and of decoated seeds at 25/15°C and in both germination percentage and rate of excised embryos at 15/6°C. Eight weeks of cold stratification resulted in a significant increase in the germination of scarified seeds at 25/15 and 35/20°C and of decoated seeds at 15/6 and 25/15°C. Based on the results of our study and on information reported in the literature, we conclude that seeds of S. angulatus not only have PY, but also non‐deep PD, that is, combinational dormancy (PY + PD).  相似文献   

15.
Some parameters of the production of an alkaline protease by Rhizopus oryzae in the solid state fermentation of wheat bran were optimized. Using the optimum parameters of an inoculum age of 7 days, an incubation time of 9 days, an amount of CZAPEK ‐DOX (liquid medium) of 6 ml/g bran and an incubation temperature of 33°C, an activity of 50 U/g bran was achieved. The initial pH of the CZAPEK ‐DOX medium had little effect. Re‐incubation of mouldy bran with only fresh CZAPEK ‐DOX yielded 3 times total activity compared to single‐cycle fermentation. As for the effect of the amount CZAPEK ‐DOX medium, the water constituent contributed more to activity increase than did the salt component. The ARRHENIUS activation energies were 23 and 7.9 kcal/mole below and above the optimum of 33°C, respectively. In all the studies, along with protease production, variation of protein content and specific activity were also observed. Attempts were made to explain the effects and also gauge their implications for large‐scale production.  相似文献   

16.
Aims: To characterize of a thermostable recombinant α‐l ‐arabinofuranosidase from Caldicellulosiruptor saccharolyticus for the hydrolysis of arabino‐oligosaccharides to l ‐arabinose. Methods and Results: A recombinant α‐l ‐arabinofuranosidase from C. saccharolyticus was purified by heat treatment and Hi‐Trap anion exchange chromatography with a specific activity of 28·2 U mg?1. The native enzyme was a 58‐kDa octamer with a molecular mass of 460 kDa, as measured by gel filtration. The catalytic residues and consensus sequences of the glycoside hydrolase 51 family of α‐l ‐arabinofuranosidases were completely conserved in α‐l ‐arabinofuranosidase from C. saccharolyticus. The maximum enzyme activity was observed at pH 5·5 and 80°C with a half‐life of 49 h at 75°C. Among aryl‐glycoside substrates, the enzyme displayed activity only for p‐nitrophenyl‐α‐l ‐arabinofuranoside [maximum kcat/Km of 220 m(mol l?1)?1 s?1] and p‐nitrophenyl‐α‐l ‐arabinopyranoside. This substrate specificity differs from those of other α‐l ‐arabinofuranosidases. In a 1 mmol l?1 solution of each sugar, arabino‐oligosaccharides with 2–5 monomer units were completely hydrolysed to l ‐arabinose within 13 h in the presence of 30 U ml?1 of enzyme at 75°C. Conclusions: The novel substrate specificity and hydrolytic properties for arabino‐oligosaccharides of α‐l ‐arabinofuranosidase from C. saccharolyticus demonstrate the potential in the commercial production of l ‐arabinose in concert with endoarabinanase and/or xylanase. Significance and Impact of the Study: The findings of this work contribute to the knowledge of hydrolytic properties for arabino‐oligosaccharides performed by thermostable α‐l ‐arabinofuranosidase.  相似文献   

17.
In Egypt, powdery mildew was observed for the first time on dill plants, during annual disease surveys of March–May 2003 and 2005. Typical symptoms of powdery mildew of dill plant (Anethum graveolens L.) were observed in Gharbeia Governorate. Symptoms of powdery mildew became common on leaves, stems inflorescences and fruits as white irregular areas. These symptoms appeared at vegetative and early flowering stages then gradually increased through fruiting and pre-maturity stages. Samples of infected leaflets, stem, inflorescences and fruits were collected for examination by light and scanning electron microscope (SEM). Microscopic examination revealed that conidiophores were short, erect–69 × 6–10 μm in dimension, conidia were observed without conspicuous fibrosin bodies singly, elliposid to ovoid 25–33 × 10–16 μm in dimension, and the length to width ratio of conidia ranged from 1.7 to 2.0 and were produced singly. Cylindrical foot cells (22.0 × 8.0 μm) were followed by one or two shorter cells (12.5 × 7.5 μm). In spring, the sexual stage (cleistothecia) appeared on infected leaves and stems in spherical, gregarious measures 105–117 (111) × 100– 87.5 μm in diameter. Each cleistothecium contained (2–4) round to ovoid asci, 45–55 (50) × 45–25 (35) μm in dimension. The ascus contained (3–4) ellipsoid to ovoid ascospores, 20–17.5 × 15–10 (13.2) μm. Cleistothecia appendages are simple myceloid branched tips measuring 80–200 (140) μm in length and 3–5 (4) μm in diameter. Based on the observations of the morphology of its anamorph and teleomorph stages, the causal agent of dill powdery mildew was identified as Erysiphe heraclei which is reported for the first time in Egypt.  相似文献   

18.
Understanding the mechanisms responsible for divergence and specialization of pathogens on different hosts is of fundamental importance, especially in the context of the emergence of new diseases via host shifts. Temporal isolation has been reported in a few plants and parasites, but is probably one of the least studied speciation processes. We studied whether temporal isolation could be responsible for the maintenance of genetic differentiation among sympatric populations of Ampelomyces, widespread intracellular mycoparasites of powdery mildew fungi, themselves plant pathogens. The timing of transmission of Ampelomyces depends on the life cycles of the powdery mildew species they parasitize. Internal transcribed spacer sequences and microsatellite markers showed that Ampelomyces populations found in apple powdery mildew (Podosphaera leucotricha) were genetically highly differentiated from other Ampelomyces populations sampled from several other powdery mildew species across Europe, infecting plant hosts other than apple. While P. leucotricha starts its life cycle early in spring, and the main apple powdery mildew epidemics occur before summer, the fungal hosts of the other Ampelomyces cause epidemics mainly in summer and autumn. When two powdery mildew species were experimentally exposed to Ampelomyces strains naturally occurring in P. leucotricha in spring, and to strains naturally present in other mycohost species in autumn, cross‐infections always occurred. Thus, the host‐related genetic differentiation in Ampelomyces cannot be explained by narrow physiological specialization, because Ampelomyces were able to infect powdery mildew species they were unlikely to have encountered in nature, but instead appears to result from temporal isolation.  相似文献   

19.
Wheat (Triticum aestivum L.) incurs significant yield losses from powdery mildew, a major fungal disease caused by Blumeria graminis f. sp. tritici (Bgt). enhanced disease resistance1 (EDR1) plays a negative role in the defense response against powdery mildew in Arabidopsis thaliana; however, the edr1 mutant does not show constitutively activated defense responses. This makes EDR1 an ideal target for approaches using new genome‐editing tools to improve resistance to powdery mildew. We cloned TaEDR1 from hexaploid wheat and found high similarity among the three homoeologs of EDR1. Knock‐down of TaEDR1 by virus‐induced gene silencing or RNA interference enhanced resistance to powdery mildew, indicating that TaEDR1 negatively regulates powdery mildew resistance in wheat. We used CRISPR/Cas9 technology to generate Taedr1 wheat plants by simultaneous modification of the three homoeologs of wheat EDR1. No off‐target mutations were detected in the Taedr1 mutant plants. The Taedr1 plants were resistant to powdery mildew and did not show mildew‐induced cell death. Our study represents the successful generation of a potentially valuable trait using genome‐editing technology in wheat and provides germplasm for disease resistance breeding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号