首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A direct radioligand binding technique utilizing the beta-adrenergic antagonist [3H]dihydroalprenolol was employed in the identification and characterization of Trypanosoma cruzi beta-adrenergic receptors. [3H]DHA binding was saturable (Bmax = 1.5 pmol/10(6) cells) with an apparent equilibrium dissociation constant (Kd) of 127 nM. Binding of [3H]DHA was displaced by propranolol in a concentration-dependent manner. The relative potency order of adrenergic ligands in displacing [3H]DHA binding was: propranolol greater than or equal to alprenolol greater than epinephrine. 5-Hydroxytryptamine, phentolamine and catechol had no effect. The experimental results support the suggestion that beta-adrenergic receptors are present in the pathogenic protozoa Trypanosoma cruzi.  相似文献   

2.
Antibodies to receptor ligands have been valuable in understanding the nature of receptor-ligand interactions. We have developed four monoclonal antibodies to the beta-adrenergic receptor antagonist alprenolol by immunizing A/J mice with (-)-alprenolol coupled to keyhole limpet hemocyanin. The antisera from these mice displayed specific [3H]dihydroalprenolol ([3H]DHA) binding that was inhibited by alprenolol, propranolol, and isoproterenol. Somatic cell fusion of spleen cells from the immunized mice to SP2/0 myeloma cells, followed by limited dilution subcloning, resulted in the isolation of four hybridomas (1B7, 5B7, 5D9, and 2G9) demonstrating three different classes of ligand binding characteristics. 1B7 had the highest binding affinity for antagonists based on Scatchard analysis (Kd [125I]- CYP = 1.4 X 10(-10) M; Kd [3H]DHA = 6.5 X 10(-9) M), and was the only antibody to demonstrate agonist-inhibition of [3H]DHA binding. Ki values computed from competitive inhibition curves of [3H]DHA binding to 1B7 resulted in a rank order of potency similar to that of beta-2-adrenergic receptors: (-)-propranolol greater than acebutolol amine greater than isoproterenol greater than (+)-propranolol greater than epinephrine greater than norepinephrine. 5B7 and 5D9 exemplified a second class of antibody. This pair had lower antagonist binding affinities (Kd [3H]DHA = 2 X 10(-8) M and 2.5 X 10(-7) M, respectively) and was stereoselective in binding receptor antagonists: (-)-propranolol greater than (+)-propranolol greater than acebutolol amine. Agonist inhibition of [3H]DHA binding to these antibodies could only be observed at very high concentrations (greater than 10(-4) M agonist), and was not dose-dependent. Finally, the class of anti-alprenolol monoclonal antibodies represented by 2G9 had the lowest antagonist binding affinity of all (IC50 alprenolol = 1 X 10(-5) M), did not demonstrate ligand stereoselectivity, and did not recognize agonists. We propose that antibodies raised against beta-adrenergic receptor ligands demonstrating stereoselective agonist binding will also demonstrate high affinity antagonist binding, and that they will closely parallel the binding characteristics of the receptor. According to this "agonist best-fit hypothesis," anti-idiotypic antibodies raised against the binding site of these idiotypes might contain true mirror images of the beta-adrenergic receptor binding site.  相似文献   

3.
Rat glioma C6 cells, cultured in the presence of the tricyclic antidepressant desipramine, lost a significant number of beta-adrenergic receptors in a time- and dose-dependent manner. A similar loss was observed whether binding was determined on intact cells with the hydrophilic beta-adrenergic antagonist (+/-)-[3H]4-(3-tert-butylamino-2-hydroxypropoxyl)benzimidazole-2-o n HCl ([3H]CGP-12177) or on cell lysates with the more hydrophobic antagonists [125I]iodocyanopindolol or [3H]dihydroalprenolol. When stimulated with the agonist isoproterenol, desipramine-treated cells accumulated less cyclic AMP than control cells. The affinity of the beta-adrenergic receptors for either antagonist or agonist was unchanged after desipramine treatment. Desipramine interacted only weakly with the receptors and competed for [125I]iodocyanopindolol binding with a Ki of 30 microM. The presence in the culture medium of alprenolol or propranolol, potent beta-adrenergic antagonists, however, did not prevent the reduction in receptors by desipramine. Desipramine also caused a loss of beta-adrenergic receptors from cells maintained in serum-free medium and the cells themselves did not contain or secrete endogenous catecholamines. Although desipramine is a potent inhibitor of catecholamine uptake, it appears unlikely that the observed loss of beta-adrenergic receptors in rat glioma C6 cells exposed to the drug is due to an increase in extracellular catecholamine levels or to a direct interaction with the receptors.  相似文献   

4.
The beta-adrenergic receptor of C6 glioma cells contains a disulfide bridge which can be reduced by dithiothreitol (DTT). On intact cells, N-ethylmaleimide (NEM) (5 mM) does not change the affinity of [3H] H2-alprenolol ([3H] DHA) but reduces the total number of beta-adrenergic cell receptors by 21 +/- 3 per cent ; (N = 3). After receptor reduction by DTT, NEM irreversibly blocks the accessibility of the beta-adrenergic receptors to [3H]DHA. On isolated membranes, incubation in the presence of either NEM (5 mM) or isoproterenol (5.10(-7) M) does not significantly modify the total number of beta-adrenergic receptors accessible to [3H]DHA. Incubation of membranes with both NEM and isoproterenol reduces the number of binding sites by 33 +/- 2 per cent ; (N = 3). A thiol derivative of propranolol was synthetized. Its affinity is 10 times lower than that of propranolol. This sulfur derivative reduces the total number of beta-adrenergic receptors by 22 +/- 3 per cent (N = 3) when incubated with the native receptor and by 55 +/- 4 per cent (N = 4) when incubated with the reduced receptor. DTT does not significantly reverse the blockade induced by propranolol-SH. A model is proposed for explaining these results.  相似文献   

5.
Treatment of cultured Kupffer cells with the beta-adrenergic agonist isoproterenol (10 microM) for a short period of time (30 min) attenuated the subsequent platelet-activating factor (PAF)-induced arachidonic acid release and cyclooxygenase-derived eicosanoid (e.g. thromboxane B2 and prostaglandin E2) production. This effect of isoproterenol was highly specific since the alpha-adrenergic agonist phenylephrine and the beta-adrenergic antagonist propranolol had no effect on the stimulatory effect of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC). The inhibitory effect of isoproterenol on the AGEPC-induced arachidonic acid release was demonstrated through the use of a specific beta-adrenergic subtype agonist and antagonist to be mediated by beta 2-adrenergic receptors on Kupffer cells. These inhibitory effects of isoproterenol can be mimicked by dibutyryl cAMP but not by dibutyryl cGMP, suggesting that a cAMP-dependent mechanism is likely involved in the regulatory action of isoproterenol. Ligand binding studies indicated that short term (i.e. 30 min) treatment of the cultured Kupffer cells with either isoproterenol or dibutyryl cAMP had no effect on the specific [3H]PAF binding. However, long term incubation (9-24 h) with dibutyryl cAMP caused down-regulation of the PAF receptors in rat Kupffer cells. Forskolin (0.1 mM), an adenylyl cyclase activator, down-regulated the surface expression of the AGEPC receptors more rapidly, decreasing the specific [3H]AGEPC binding by approximately 40% within 2 h. The receptor regulatory effect of dibutyryl cAMP and forskolin was time- and concentration-dependent. These observations suggest that a cAMP-dependent mechanism coupled with beta 2-adrenergic receptors may have important regulatory effects on the PAF receptor and post-receptor signal transducing mechanisms for PAF in hepatic Kupffer cells.  相似文献   

6.
Characterization of beta-adrenergic binding sites on rodent Leydig cells   总被引:1,自引:0,他引:1  
A radioligand binding technique was used to study beta-adrenergic binding sites on rodent Leydig cells. Beta-Adrenergic binding sites were found on Leydig cells in both the rat and mouse. Binding of [3H]CGP-12177 [4-(3-t-butylamino-2-hydroxypropoxy)-[5,7-3H]benzimidazole-2-one] to purified rat Leydig cells was found to be saturable, temperature and time dependent, stereospecific, and readily reversible by the beta-adrenergic antagonist propranolol. Scatchard analysis revealed the presence of high-affinity sites with an apparent dissociation constant (Kd) of 0.79 +/- 0.22 nM and maximal binding capacity (Bmax) of 1716 +/- 245 sites per rat Leydig cell. Competition of various beta-adrenergic agonists and antagonists with [3H]CGP indicates an order of potency of L-isoproterenol greater than epinephrine = salbutamol greater than norepinephrine greater than D-isoproterenol and dl-propranolol = ICI 118,551 much greater than atenolol, respectively. These observations suggest that the binding sites are predominantly of the beta 2-receptor subtype. Incubation of freshly isolated rat Leydig cells with luteinizing hormone (100 ng/ml) caused consistent stimulation of androgen production, but only occasional stimulation by the beta-agonist isoproterenol (10 microM) was observed. However, these cells consistently responded to the beta-agonist after 3 h in primary cultures. These findings indicate that rodent Leydig cells possess beta-adrenergic binding sites and point out a possible dissociation between receptor recognition and physiologic response.  相似文献   

7.
Thyroid hormone regulation of beta-adrenergic receptor number.   总被引:27,自引:0,他引:27  
The effects of exogenous thyroid hormones (thyroxine and triiodothyronine) on beta-adrenergic receptors in the rat myocardium were investigated. The potent beta-adrenergic antagonist, (-)-[3H]dihydroalprenolol, was used to directly estimate the number and affinity of beta-adrenergic receptors in rat heart membranes from control and hyperthyroid rats. Cardiac membranes from hyperthyroid rats contained 196 +/- 7 fmol of (-)-[3H]dihydroalprenolol binding sites/mg of protein which was significantly (p less than 0.005) greater than the number of binding sites (89 +/- 5 fmol/mg of protein) present in control membranes. The equilibrium dissociation constant (KD) for the interaction of receptors with dihydroalprenolol was the same (2 to 15 nM) in membranes from control and hyperthyroid rats. Similarly, there was no significant difference between the control and hyperthyroid membranes in the affinity of the beta-adrenergic receptor binding sites for the beta-adrenergic agonist isoproterenol. The results of this study demonstrate that thyroid hormones can regulate the number of cardiac beta-adrenergic receptors. The increased numbers of receptors may be responsible, at least in part, for the enhanced catecholamine sensitivity of beta-adrenergic-coupled cardiac responses in the hyperthyroid state.  相似文献   

8.
We have investigated the effect of mineralocorticoids on beta-adrenergic receptors in cultured arterial smooth muscle cells. Mineralocorticoid (aldosterone) treatment resulted in a significant increase in beta-adrenergic receptors measured by [3H]dihydroalprenolol (DHA) binding. This effect required at least 20 hours of incubation with aldosterone and was completely blocked by cycloheximide (10 micrograms/ml), indicating protein synthesis was required for this response. Aldosterone at the concentration range of 10(-8)-10(-6) M increased [3H]DHA binding, but was ineffective at 10(-9) M. Scatchard analysis of [3H]DHA binding revealed that the observed significant increase in binding was due to an increased number of binding sites (P less than 0.05), and that the affinity was unchanged. The aldosterone (1 x 10(-8) M) effect was completely blocked by the combination of RU 38486 (10(-6) M) and spironolactone (10(-7) M), but not by the glucocorticoid antagonist RU 38486 alone. While basal c-AMP levels were not changed by aldosterone (10(-6) M) treatment, the isoproterenol (10(-6) M) stimulated level of c-AMP was significantly higher in cells treated with aldosterone (P less than 0.05). We conclude that aldosterone, acting through the mineralocorticoid receptor, has a direct effect on arterial smooth muscle cells mediated through modulation of beta-adrenergic receptors of these cells.  相似文献   

9.
The beta-adrenergic receptors of isolated human fat cells were identified using a new hydrophilic beta-adrenergic radioligand (+/-)[3H]CGP-12177. The results were compared with those from [3H]dihydroalprenolol binding to fat cells and membranes. [3H]CGP-12177 binding to isolated fat cells showed lower nonspecific binding (less than 15% of total binding) than the lipophilic [3H]dihydroalprenolol (40-60%) at 3 times the KD. At 37 degrees C, [3H]CGP-12177 binding was rapid, reversible, of high affinity (1.2 +/- 0.3 nM) and saturable. The total number of binding sites per cell in subcutaneous adipocytes was 25,000 +/- 6,000 and was equivalent to that found using membrane fractions. Displacement of [3H]CGP-12177 bound to adipocytes by propranolol was stereoselective, consistent with competition at a single site, and had the same characteristics as in membranes. The displacement curves of the beta 1-selective antagonists (atenolol and betaxolol) were biphasic, the high affinity displacement accounting for 70% of the total binding sites. Beta-adrenergic agonists also competed with [3H]CGP-12177 binding in the order of potency: (-) isoproterenol greater than (-) norepinephrine greater than (-) epinephrine, similar to that found in membranes and in in vitro studies on the lipolytic activity of isolated fat cells. This study demonstrates that the sites specifically labeled by [3H]CGP-12177 are the physiological beta-adrenoceptors and also shows that the ligand is better than [3H]dihydroalprenolol for the accurate identification of these receptors in intact human adipocytes. The methodology, which requires biopsies of less than 1 gram of adipose tissue, can be of potential interest for clinical studies investigating the status of fat cell beta-adrenoceptors in various pathophysiological situations.  相似文献   

10.
The radiolabeled agonist [3H]hydroxybenzylisoproterenol ([3H]HBI) and antagonist [125I]iodopindolol ([125I]IPIN) were used to investigate the properties of beta-adrenergic receptors on membranes prepared from L6 myoblasts and S49 lymphoma cells. The high affinity binding of (-)-[3H]HBI to membranes prepared from L6 myoblasts was stereoselectively inhibited by the active isomers of isoproterenol and propranolol. The density of receptors determined with (-)-[3H]HBI was less than that determined with [125I]IPIN. The binding of (-)-[3H]HBI was inhibited by guanine nucleotides, suggesting an agonist-mediated association of the receptor with a guanine nucleotide-binding protein, presumably the stimulatory guanine nucleotide-binding protein (Ns) of adenylate cyclase. Results obtained in studies with membranes prepared from wild-type S49 lymphoma cells and the adenylate cyclase-deficient variant (cyc-) were similar to those obtained in experiments carried out with membranes prepared from L6 myoblasts. Thus, the high affinity binding of (-)-[3H]HBI to membranes prepared from wild-type and cyc- S49 lymphoma cells was stereoselectively inhibited by the active isomers of isoproterenol and propranolol, and was inhibited by GTP. Moreover, the density of sites determined with (-)-[3H]HBI was less than that determined with [125I]IPIN. These results suggest either that cyc- cells contain a partially functional Ns, or alternatively, that the inhibitory guanine nucleotide-binding protein (Ni) is capable of interacting with beta-adrenergic receptors.  相似文献   

11.
Binding of [3H]dihydroergokryptine and [3H]dihydroalprenolol to membrane preparations from rat submaxillary gland was measured to characterize the alpha- and beta-adrenergic receptors, respectively. Kinetic analysis of the data revealed a high affinity binding site for each radioligand. Inhibition of binding at each site was stereospecific for the active isomer of the catecholamine used. The greater ability of a beta1 than beta2 specific beta-adrenergic antagonist to displace [3H]dihydroalprenolol binding indicated that this binding site was of the beta1 type. Chemical sympathectomy with reserpine or 6-hydroxydopamine resulted in a significant increase in both [3H]dihydroalprenolol and [3H]dihydroergokryptine binding in the rat submaxillary gland. 3scatchard analysis of the data indicated that these increases in binding were due to a change in total number of binding sites for [3H]dihydroergokryptine and [3H]dihydroalprenolol with little change in apparent affinities. This suggests that changes in alpha- and beta-adrenergic receptor density may be important in the development of supersensitivity in salivary glands after reserpine and 6-hydroxydopamine treatment.  相似文献   

12.
This report describes the uptake of L-[propyl-2,3-3H]dihydroalprenolol, a beta-adrenergic antagonist, by HeLa (human adenocarcinoma) cells. [3H]Dihydroalprenolol binds to sites of high capacity and low affinity in intact HeLa cells. The binding achieves equilibrium rapidly and is rapidly reversible. Bound [3H]dihydroalprenolol is displaceable by beta-adrenergic antagonists in a nonstereoselective fashion, but is not displaceable by isoproterenol, an adrenergic agonist. Phentolamine, an alpha-adrenergic antagonist, and chloroquine, a lysosomotropic amine, also compete for [3H]dihydroalprenolol binding sites. [3H]Dihydroalprenolol binding is inhibited by metabolic inhibitors, but not by cytoskeletal blocking agents. The binding is sensitive to extracellular pH (less binding at lower pH) and is temperature-sensitive (less binding at lower temperatures). The bound radioligand is rapidly reversed following hypotonic lysis of the cells. These [3H]dihydroalprenolol binding sites in intact HeLa cells therefore do not have the characteristics expected for beta-adrenergic receptors. Further studies showed that beta-adrenergic receptors could be detected in a HeLa membrane preparation using [125I]iodohydroxybenzylpindolol, and that chloroquine had very low affinity for these receptors. We conclude that [3H]dihydroalprenolol diffuses across the plasma membrane of intact HeLa cells and accumulates in acidic intracellular compartments.  相似文献   

13.
1. Using [3H]DHA and unlabeled L-alprenolol, a substantial amount of over 64% specific binding of beta-adrenergic receptor has been identified on the neuroblastoma x glioma hybrid NG108-15 cell, which has been proven to display numerous functional characteristics of intact neurons. 2. Beta-adrenergic receptor binding on intact NG108-15 cells does not change significantly upon morphological differentiation, induced by 1 mM dibutyryl cyclic AMP (dBcAMP). 3. The [3H]DHA binding on intact NG108-15 cells is rapid, saturable, and reversible, having a t1/2 of 1.0 min for association and 3.5 min for dissociation. 4. The affinity constant (Kd) and maximum binding capacity (Bmax) for binding of [3H]DHA to beta-adrenergic receptors on NG108-15 cells have been estimated by Scatchard plot analysis to be 2.5 and 0.23 nM, respectively. Further analysis indicates a single class of receptors for [3HDHA binding on NG108-15 cells. 5. Studies on kinetic properties have revealed on-rate (K + 1) and off-rate (K - 1) constants of 0.7 X 10(-9) M min-1 and 0.19 min-1, respectively. Further, the IC50 value and inhibition constant (Ki) for unlabeled L-alprenolol to inhibit [3HDHA binding on NG108-15 cells have been estimated to be 10(-5) and 8.9 X 10(-6) M, respectively. 6. The rank-order potency of catecholamine agonists, (-)ISO greater than (+)ISO greater than EPI greater than NE, reveals the presence of type 2 receptor for the beta-adrenergic binding on both differentiated and undifferentiated NG108-15 cells. 7. The present study indicates that the clonal neuroblastoma x glioma hybrid NG108-15 cell line possesses substantial amounts of beta-adrenergic receptors with characteristics similar to those on neuronal cells.  相似文献   

14.
Ontogeny of alpha 1- and beta-adrenergic receptors in rat lung   总被引:2,自引:0,他引:2  
The binding characteristics of the alpha 1-selective adrenergic ligand [3H]-prazosin were determined in particulate membranes of rat lung from day 18 of gestation to adulthood. Specific binding was present at all ages studied, was reversible and inhibition of specific binding by agonists followed the order of potency: (-)-epinephrine = (-)-norepinephrine much greater than (-)-isoproterenol greater than (+)-norepinephrine. Inhibition by antagonists followed the order of potency: prazosin greater than WB4101, much greater than yohimbine. Binding capacity increased during the neonatal period from 52 +/- 9 fmoles x mg-1 protein in lung preparations on day 18 of a 21 day gestation increasing to 105 +/- 4 fmoles x mg-1 protein (mean +/- SE) by postnatal day 15. Binding activity decreased thereafter, reaching adult levels by 28 days of postnatal age, 62 +/- 3 fmoles x mg-1 protein. This pattern of alpha 1-adrenergic receptor density was distinct from that of beta-adrenergic receptors identified in rat lung membrane with the beta- adrenergic antagonist, (-)-[3H]dihydroalprenolol ((-)-[3H]DHA). (-)-[3H]DHA binding increased dramatically during this same time period, from 46 +/- 4 fmoles x mg-1 protein on day 18 of gestation to 496 +/- 44 fmoles x mg-1 protein in the adult lung. Affinity for [3H]-prazosin and (-)-[3H]DHA did not change with age. Pulmonary alpha 1-adrenergic receptors are present as early as 18 days of gestation in the rat and alpha 1-adrenergic receptor density is maximal by 15 days of postnatal age. The timing of the changes in alpha 1-adrenergic receptors correlates with the timing of increased sympathetic innervation of the developing rat lung and is distinct from that of beta-adrenergic receptor sites.  相似文献   

15.
The specific beta-adrenergic agonist radioligand (+/-)-[3H]hydroxybenzylisoproterenol ([3H]HBI) was used to investigate alterations in the beta-adrenergic receptors of frog erythrocytes occurring during the process of agonist-induced, receptor-specific desensitization. There was close agreement between the percentage fall in [3H]HBI binding and that in catecholamine-stimulated adenylate cyclase activity following periods of preincubation of up to 7 h with 0.1 mM (-)-isoproterenol. Desensitization was maximal by 5 h, resulting in a 69% reduction in [3H]HBI binding and a 67% reduction in isoproterenol-stimulated adenylate cyclase activity. In contrast, binding of the beta-adrenergic antagonist (-)-[3H]dihydroalprenolol was significantly less affected by desensitization (p is less than 0.05 at 2 1/2, 5, and 7 h), showing a maximum reduction in binding of only 35% in these experiments. The consistent close agreement of reduction in agonist binding with that in hormone-stimulated adenylate cyclase activity, together with the significant difference observed between agonist and antagonist binding, implies that an alteration occurs during desensitization which preferentially interferes with agonist binding, while antagonist binding is less affected. The locus of this agonist-specific alteration may be the receptor binding site or a site involved in receptor-enzyme coupling. Agonist binding studies may now be used to assess more completely the desensitized state of beta-adrenergic receptors in systems in which marked desensitization of beta-adrenergic responses is associated with little or no reduction in antagonist binding.  相似文献   

16.
[3H]Dihydroalprenolol was used to study beta-adrenergic binding sites in plasma membranes isolated from rabbit liver. Specific binding was measured at 25 degrees C as the difference between total binding and binding in the presence of 2 microM dl-propranolol or 10 microM l-isoproterenol. Binding was saturable and stereoselective. The maximum number of binding sites (Bmax) was 434 +/- 41 fmol/mg of protein. The Kd for this binding as determined by Scatchard analysis was 1.39 +/- 0.09 nM. This value agreed well with the Kd value (1.27 +/- 0.12 nM) determined by kinetic analysis. The potency order for the displacement of bound [3H]dihydroalprenolol was isoproterenol greater than epinephrine greater than norepinephrine, indicative of beta 2-receptors. Use of beta 1- and beta 2-subtype-selective inhibitors also supported the interpretation that the binding characteristics are those of beta 2-receptors. Computer-aided analysis of this inhibition indicated that the beta-receptors in this membrane are predominantly, if not exclusively, of the beta 2-subtype. That these receptors are responsible for mediating catecholamine stimulation of hepatic glycogenolysis was deduced from the inhibition of agonist-stimulated glycogenolysis, in isolated hepatocytes, by beta-receptor subtype-selective antagonists. Thus, the hydrochloride of (t-butylamino-3-ol-2-propyl)oximino-9 fluorene, a beta-antagonist which has higher affinity at beta 2-sites than at beta 1-sites, was 3 orders of magnitude more potent in inhibiting isoproterenol-stimulated glycogenolysis than either atenolol or practolol, both of which are beta 1-selective antagonists. These results resemble the inhibition of [3H]dihydroalprenolol binding in plasma membranes. The glycogenolytic effects of catecholamines occurred with the potency order isoproterenol greater than epinephrine greater than norepinephrine. Thus, both by radioligand binding studies and by metabolic studies, the functional adrenergic receptor in the rabbit liver is shown to be of the beta 2-subtype.  相似文献   

17.
Both alpha- and beta-adrenergic receptors have been identified in the human myometrium by radioligand binding. Both adrenergic receptor subclasses have been shown to mediate the contractile response of the uterus upon catecholamine stimulation: alpha-adrenergic receptors cause uterine contraction while beta-adrenergic receptors induce relaxation. We have identified alpha 1- and alpha 2-adrenergic receptors in myometrial membranes using the newly developed radiolabelled specific antagonists [3H]-prazosin and [3H]-rauwolscine. This enabled us to characterize both receptor subclasses individually. Beta adrenergic receptors were identified using the radiolabelled antagonist (-)-[3H]-dihydroalprenolol. Binding of radioligands to the myometrial membrane receptors was rapid, readily reversible, of high affinity and stereoselective. The total number of alpha 1-, alpha 2- and beta-receptors was determined by Scatchard analysis of radioligand saturation binding and the beta/beta 2-receptor ratio was determined by computer analysis of the beta 2-selective antagonist ICI 118 551) (-)-[3H]-dihydroalprenolol competition binding curves. This enabled us to study the regulation of both alpha- and beta-receptor subclasses under various physiological and pharmacological conditions in the human, i.e., during different phases of the menstrual cycle, in postmenopausal women and during depo-progestin (Medroxyprogesterone acetate) therapy. Only the alpha 2- and beta 1-adrenergic receptor concentrations were found to be subjected to gonadal steroid regulation. The number of alpha 2- and beta 1-adrenergic receptors increased concomitantly with circulating plasma oestradiol levels. This effect was counteracted by progesterone. The number of alpha 1- and beta 2-adrenergic receptors was unaffected by the gonadal steroid environment. These results are an example of the heteroregulation of membrane receptors by oestrogens and progesterone and cast new light on the regulatory mechanisms involved in uterine contractility in the human.  相似文献   

18.
The effects of castration and androgen-replacement on adrenergic receptors in membranes from the rat seminal vesicle were studied. Membranes from seminal vesicles showed saturable and high-affinity binding sites for the beta-adrenergic receptor antagonist, [3H]dihydroalprenolol ([3H]DHA), and the alpha 1-adrenergic receptor antagonist, [3H]prazosin. Castration markedly reduced beta-adrenergic receptors with decreasing the effect of GTP modulating the receptor-ligand affinity, suggesting defects in both the receptor per se and the guanine-nucleotides-regulating mechanism after castration. In contrast, castration increased alpha 1-adrenergic receptors and androgen-replacement reversed this change. The effects of GTP decreasing the alpha 1-receptor binding affinity to the radioligand were observed to a similar extent in the castrated and control membranes. These results demonstrate an inverse regulation by androgen on beta- and alpha 1-adrenergic receptors in membranes of the rat seminal vesicle.  相似文献   

19.
Treatment of frog erythrocytes with N,N' dicyclohexylcarbodiimide (DCCD) leads to a loss of catecholamine stimulated adenylate cyclase activity without any decrease in fluoride or PGE1 stimulated cyclase. However, the concentrations of the reagent which inhibit catecholamine sensitive adenylate cyclase activity are 10 fold lower than those which inhibit specific [3H]dihydroalprenolol ([3H]DHA) beta-adrenergic receptor binding. By contrast binding of the readiolabeled beta-adrenergic agonist [3H]hydroxybenzylisoproterenol ([3H]HBI) is considerably more sensitive than antagonist binding to the effects of DCCD. The data suggest that low concentrations of the reagent may modify the effector portion of the beta-adrenergic receptor leading to functional uncoupling of the beta-receptor adenylate cyclase system. At higher concentrations of the reagent the ligand bidning site of the beta-receptor appears also to be altered.  相似文献   

20.
Beta-adrenergic receptors were characterized in freshly excised fetal mouse testis using the radioiodinated antagonist iodocyanopindolol (ICYP). [125I]-CYP bound to a single class of high affinity sites with a KD value of 42.2 +/- 7.0 pM. Adrenergic agonists competed for ICYP binding sites with the following order of potency: (-)isoproterenol greater than (-)epinephrine much greater than (-)norepinephrine which is typical for a beta 2-adrenergic receptor. A selective beta 2-receptor antagonist ICI 118-551 showed an approximately 200 fold higher affinity than the beta 1-selective compound, betaxolol. The beta-adrenergic agonist (-)isoproterenol did not or slightly affect testosterone production by freshly isolated fetal Leydig cells. The ability of fetal Leydig cells to respond to (-)isoproterenol increased during culture. This change in responsiveness was not accompanied either by modification of the number of binding sites or by change in the binding affinity. Taken together these data suggest that i) the stimulatory effect of (-)isoproterenol on testosterone production by cultured fetal Leydig cells is mediated through beta 2-adrenergic receptors ii), the inability of freshly Leydig cells to respond to catecholamines is probably due to post receptor events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号