首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribozymes are RNA molecules that act as chemical catalysts. In contemporary cells, most known ribozymes carry out phosphoryl transfer reactions. The nucleolytic ribozymes comprise a class of five structurally-distinct species that bring about site-specific cleavage by nucleophilic attack of the 2'-O on the adjacent 3'-P to form a cyclic 2',3'-phosphate. In general, they will also catalyse the reverse reaction. As a class, all these ribozymes appear to use general acid-base catalysis to accelerate these reactions by about a million-fold. In the Varkud satellite ribozyme, we have shown that the cleavage reaction is catalysed by guanine and adenine nucleobases acting as general base and acid, respectively. The hairpin ribozyme most probably uses a closely similar mechanism. Guanine nucleobases appear to be a common choice of general base, but the general acid is more variable. By contrast, the larger ribozymes such as the self-splicing introns and RNase P act as metalloenzymes.  相似文献   

2.
Molecular biology has been revolutionized by the miniaturization and parallelization of DNA sequencing assays previously performed on bulk samples. Many of these technologies rely on biomolecular reagents to facilitate detection, synthesis, or labeling of samples. To aid in the construction of analogous experimental approaches for proteins and peptides, we have used computer-aided design to engineer an enzyme capable of catalyzing the cleavage step of the Edman degradation. We exploit the similarity between the sulfur nucleophile on the Edman reagent and the catalytic cysteine in a naturally occurring protease to adopt a substrate-assisted mechanism for achieving controlled, step-wise removal of N-terminal amino acids. The ability to expose amino acids iteratively at the N-terminus of peptides is a central requirement for protein sequencing techniques that utilize processive degradation of the peptide chain. While this can be easily accomplished using the chemical Edman degradation, achieving this activity enzymatically in aqueous solution removes the requirement for harsh acid catalysis, improving compatibility with low adsorption detection surfaces, such as those used in single molecule assays.  相似文献   

3.
The hairpin ribozyme is a small catalytic RNA with reversible phosphodiester cleavage activity. Biochemical and structural studies exclude a requirement for divalent metal cation cofactors and implicate one active site nucleobase in particular, G8, in the catalytic mechanism. Our previous work demonstrated that the cleavage activity that is lost when G8 is replaced by an abasic residue is restored when certain nucleobases are provided in solution. The specificity and pH dependence of exogenous nucleobase rescue were consistent with several models of the rescue mechanism, including general acid base catalysis, electrostatic stabilization of negative charge in the transition state or a requirement for protonation to facilitate exogenous nucleobase binding. Detailed analyses of exogenous nucleobase rescue for both cleavage and ligation reactions now allow us to refine models of the rescue mechanism. Activity increased with increasing pH for both unmodified ribozyme reactions and unrescued reactions of abasic variants lacking G8. This similarity in pH dependence argues against a role for G8 as a general base catalyst, because G8 deprotonation could not be responsible for the pH-dependent transition in the abasic variant. Exogenous nucleobase rescue of both cleavage and ligation activity increased with decreasing pH, arguing against a role for rescuing nucleobases in general acid catalysis, because a nucleobase that contributes general acid catalysis in the cleavage pathway should provide general base catalysis in ligation. Analysis of the concentration dependence of cytosine rescue at high and low pH demonstrated that protonation promotes catalysis within the nucleobase-bound ribozyme complex but does not stabilize nucleobase binding in the ground state. These results support an electrostatic stabilization mechanism in which exogenous nucleobase binding counters negative charge that develops in the transition state.  相似文献   

4.
The hairpin ribozyme is a small catalytic RNA that accelerates reversible cleavage of a phosphodiester bond. Structural and mechanistic studies suggest that divalent metals stabilize the functional structure but do not participate directly in catalysis. Instead, two active site nucleobases, G8 and A38, appear to participate in catalytic chemistry. The features of A38 that are important for active site structure and chemistry were investigated by comparing cleavage and ligation reactions of ribozyme variants with A38 modifications. An abasic substitution of A38 reduced cleavage and ligation activity by 14,000-fold and 370,000-fold, respectively, highlighting the critical role of this nucleobase in ribozyme function. Cleavage and ligation activity of unmodified ribozymes increased with increasing pH, evidence that deprotonation of some functional group with an apparent pK(a) value near 6 is important for activity. The pH-dependent transition in activity shifted by several pH units in the basic direction when A38 was substituted with an abasic residue, or with nucleobase analogs with very high or low pK(a) values that are expected to retain the same protonation state throughout the experimental pH range. Certain exogenous nucleobases that share the amidine group of adenine restored activity to abasic ribozyme variants that lack A38. The pH dependence of chemical rescue reactions also changed according to the intrinsic basicity of the rescuing nucleobase, providing further evidence that the protonation state of the N1 position of purine analogs is important for rescue activity. These results are consistent with models of the hairpin ribozyme catalytic mechanism in which interactions with A38 provide electrostatic stabilization to the transition state.  相似文献   

5.
The Catalytic Mechanism of Nucleoside Diphosphate Kinases   总被引:8,自引:0,他引:8  
Nucleoside diphosphate kinases catalyze the reversible transfer of the phosphate of nucleosidetriphosphates to nucleoside diphosphates. This minireview presents recent advances inunderstanding the reaction mechanism using steady-state and fast kinetic studies, X-raycrystallography, and site-directed mutagenesis. We also briefly discuss the physiological relevance ofin vitro studies.  相似文献   

6.
An abundant enzyme of liver cytosol, 10-formyltetrahydrofolate dehydrogenase (FDH), is an interesting example of a multidomain protein. It consists of two functionally unrelated domains, an aldehyde dehydrogenase-homologous domain and a folate-binding hydrolase domain, which are connected by an approximately 100-residue linker. The amino-terminal hydrolase domain of FDH (Nt-FDH) is a homolog of formyl transferase enzymes that utilize 10-formyl-THF as a formyl donor. Interestingly, the concerted action of all three domains of FDH produces a new catalytic activity, NADP+-dependent oxidation of 10-formyltetrahydrofolate (10-formyl-THF) to THF and CO2. The present studies had two objectives: First, to explore the modular organization of FDH through the production of hybrid enzymes by domain replacement with methionyl-tRNA formyltransferase (FMT), an enzyme homologous to the hydrolase domain of FDH. The second was to explore the molecular basis for the distinct catalytic mechanisms of Nt-FDH and related 10-formyl-THF utilizing enzymes. Our studies revealed that FMT cannot substitute for the hydrolase domain of FDH in order to catalyze the dehydrogenase reaction. It is apparently due to inability of FMT to catalyze the hydrolysis of 10-formyl-THF in the absence of the cosubstrate of the transferase reaction despite the high similarity of the catalytic centers of the two enzymes. Our results further imply that Ile in place of Asn in the FDH hydrolase catalytic center is an important determinant for hydrolase catalysis as opposed to transferase catalysis.  相似文献   

7.
Trifunctional MAP-based chiral phosphines were tested as new ligands in a Pd-catalyzed asymmetric allylic alkylation, demonstrating fast and enantiodivergent catalysis. The palladium complexes of representative ligands by X-ray analysis revealed a novel mode of P,N-coordination of the ligand to the palladium center, which may contribute to switching the sense of the asymmetric induction via combined steric and tunable H-bonding interactions between the metal complex and the substrates.  相似文献   

8.
Cytokinins form a diverse class of compounds that are essential for plant growth. Cytokinin dehydrogenase has a major role in the control of the levels of these plant hormones by catalysing their irreversible oxidation. The crystal structure of Zea mays cytokinin dehydrogenase displays the same two-domain topology of the flavoenzymes of the vanillyl-alcohol oxidase family but its active site cannot be related to that of any other family member. The X-ray analysis reveals a bipartite architecture of the catalytic centre, which consists of a funnel-shaped region on the protein surface and an internal cavity lined by the flavin ring. A pore with diameter of about 4A connects the two active-site regions. Snapshots of two critical steps along the reaction cycle were obtained through the structural analysis of the complexes with a slowly reacting substrate and the reaction product, which correspond to the states immediately before (Michaelis complex) and after (product complex) oxidation has taken place. The substrate displays a "plug-into-socket" binding mode that seals the catalytic site and precisely positions the carbon atom undergoing oxidation in close contact with the reactive locus of the flavin. A polarising H-bond between the substrate amine group and an Asp-Glu pair may facilitate oxidation. Substrate to product conversion results in small atomic movements, which lead to a planar conformation of the reaction product allowing double-bond conjugation. These features in the mechanism of amine recognition and oxidation differ from those observed in other flavin-dependent amine oxidases.  相似文献   

9.
The pharmacological actions of the benzodiazepines (BZs) are thought to be mediated through specific receptor sites in the mammalian central nervous system. Characterization of these receptor sites in the brain has yielded evidence for heterogeneity of BZ receptor sites. Current theories on the molecular basis of the apparent BZ receptor heterogeneity and the possible functional significance of BZ receptor subtypes are presented. Studies of BZ receptor heterogeneity have provided insights into the molecular events that may be responsible for BZ modulation of gamma-aminobutyric-ergic function.  相似文献   

10.
Antibody 4C6 efficiently catalyzes a cationic cyclization reaction. Crystal structures of the antibody 4C6 Fab in complex with benzoic acid and in complex with its eliciting hapten were determined to 1.30A and 2.45A resolution, respectively. These crystal structures, together with computational analysis, have elucidated a possible mechanism for the monocyclization reaction. The hapten complex revealed a combining site pocket with high shape complementarity to the hapten. This active site cleft is dominated by aromatic residues that shield the highly reactive carbocation intermediates from solvent and stabilize the carbocation intermediates through cation-pi interactions. Modeling of an acyclic olefinic sulfonate ester substrate and the transition state (TS) structures shows that the chair-like transition state is favored, and trapping by water directly produces trans-2-(dimethylphenylsilyl)-cyclohexanol, whereas the less favored boat-like transition state leads to cyclohexene. The only significant change observed upon hapten binding is a side-chain rotation of Trp(L89), which reorients to form the base of the combining site. Intriguingly, a benzoic acid molecule was sequestered in the combining site of the unliganded antibody. The 4C6 active site was compared to that observed in a previously reported tandem cyclization antibody 19A4 hapten complex. These cationic cyclization antibodies exhibit convergent structural features with terpenoid cyclases that appear to be important for catalysis.  相似文献   

11.
Phosphoglycerate mutases catalyze the isomerization of 2 and 3-phosphoglycerates, and are essential for glucose metabolism in most organisms. Here, we further characterize the 2,3-bisphosphoglycerate-independent phosphoglycerate mutase (iPGM) from Bacillus stearothermophilus by determination of a high-resolution (1.4A) crystal structure of the wild-type enzyme and the crystal structure of its S62A mutant. The mutant structure surprisingly showed the replacement of one of the two catalytically essential manganese ions with a water molecule, offering an additional possible explanation for its lack of catalytic activity. Crystal structures invariably show substrate phosphoglycerate to be entirely buried in a deep cleft between the two iPGM domains. Flexibility analyses were therefore employed to reveal the likely route of substrate access to the catalytic site through an aperture created in the enzyme's surface during certain stages of the catalytic process. Several conserved residues lining this aperture may contribute to orientation of the substrate as it enters. Factors responsible for the retention of glycerate within the phosphoenzyme structure in the proposed mechanism are identified by molecular modeling of the glycerate complex of the phosphoenzyme. Taken together, these results allow for a better understanding of the mechanism of action of iPGMs. Many of the results are relevant to a series of evolutionarily related enzymes. These studies will facilitate the development of iPGM inhibitors which, due to the demonstrated importance of this enzyme in many bacteria, would be of great potential clinical significance.  相似文献   

12.
13.
The acylation of sucrose with vinyl laurate in dimethylsulfoxide was catalyzed by Celite (28% conversion in 24 h at 40 °C, 150 mg catalyst ml–1), Eupergit C (11% conversion in 24 h at 60 °C, 150 mg catalyst/ml), and even the simple Na2HPO4 (17% conversion in 24 h at 40 °C, 20 mg catalyst ml–1). These chemical acylations must therefore be taken into account in acylations of hydroxyl-containing compounds with enol esters in polar solvents using immobilized enzymes.  相似文献   

14.
Plant mitochondria contain a non-protonmotive alternative oxidase (AOX) that couples the oxidation of ubiquinol to the complete reduction of oxygen to water. In this paper we review theoretical and experimental studies that have contributed to our current structural and mechanistic understanding of the oxidase and to the clarification of the molecular nature of post-translational regulatory phenomena. Furthermore, we suggest a catalytic cycle for AOX that involves at least one transient protein-derived radical. The model is based on the reviewed information and on recent insights into the mechanisms of cytochrome c oxidase and the hydroxylase component of methane monooxygenase.  相似文献   

15.
In this short overview problems, requirements and strategies for the application of enantioselective catalysis in fine chemicals production are discussed. The factors are described and analyzed which determine whether a catalytic method is suitable for industrial application. Selected examples of enantioselective catalytic production processes are described in some detail in order to illustrate the potential of this modern technology.
Riassunto   Catalisi asimmetrica in dustriale: Metodiche e risultati. In questa breve rassegna vengono discussi i requisiti e le strategie applicative per l'impiego della catalisi, enantioselettiva nella produzione di fine chemicals. Sono descritti ed analizzati i fattori che determinano l'applicabilità industriale di un metodo catalitico. Vengono scelti e descritti in qualche dettaglio esempi di processi produttivi catalitici enantioselettivi, che servono ad illustrare il potenziale della tecnologia moderna.
  相似文献   

16.
A theozyme is a theoretical enzyme constructed by computing the optimal geometry for transition-state stabilization by functional groups. It is created in order to permit quantitative assessment of catalytic function. Theozymes have been used to elucidate the role of transition-state stabilization in the mechanisms underlying enzyme- and antibody-catalyzed hydroxyepoxide cyclizations, eliminations and decarboxylations, peptide and ester hydrolyses, and pericyclic and radical reactions. The enzymes studied include orotodine monophosphate decarboxylase, HIV protease and ribonucleotide reductase.  相似文献   

17.
Indole-3-acetic acid (IAA) inhibited specifically the growth of a wild strain of Escherichia coli IFO 3545 in a glucose-free polypeptone medium adjusted to pH below 6.3. When 50 ppm of IAA was combined with 10 ppm of 4-phenyl-3-carbostyriloxyacetic acid (V-OCH2COOH), an anti-auxin, inhibitory effect of IAA on the bacterial growth was markedly increased though V-OCH2COOH alone had no effect. When 30 ppm of IAA was combined with 10 ppm of V-OCH2COOH, inhibition increased initially, but soon decreased and disappeared. Riboflavin also increased the inhibitory effect of IAA under fluorescent light. Cysteine restored not only the effect of IAA alone but also the combination effect of IAA with riboflavin or V-OCH2COOH. An intermediary metabolite of IAA in bacteria that appeared to be identical with a photooxidation product from IAA may actually inhibit the bacterial growth. It was suggested that V-OCH2COOH stimulated the induction of IAA-metabolizing enzymes in bacteria, as in the case of plants.  相似文献   

18.
The biological phenomenon, hormonal imprinting, was named and defined by us (Biol Rev, 1980, 55, 47-63) 30?years ago, after many experimental works and observations. Later, similar phenomena were also named to epigenetic imprinting or metabolic imprinting. In the case of hormonal imprinting, the first encounter between a hormone and its developing target cell receptor-usually at the perinatal period-determines the normal receptor-hormone connection for life. However, in this period, molecules similar to the target hormone (members of the same hormone family, synthetic drugs, environmental pollutants, etc), which are also able to bind to the receptor, provoke faulty imprinting also with lifelong-receptorial, behavioral, etc.,-consequences. Faulty hormonal imprinting could also be provoked later in life in continuously dividing cells and in the brain. Faulty hormonal imprinting is a disturbance of gene methylation pattern, which is epigenenetically inherited to the further generations (transgenerational imprinting). The absence of the normal or the presence of false hormonal imprinting predispose to or manifested in different diseases (e.g., malignant tumors, metabolic syndrome) long after the time of imprinting or in the progenies.  相似文献   

19.
General acid catalysis is a powerful and widely used strategy in enzymatic nucleophilic displacement reactions. For example, hydrolysis/phosphorolysis of the N-glycosidic bond in nucleosides and nucleotides commonly involves the protonation of the leaving nucleobase concomitant with nucleophilic attack. However, in the nucleoside hydrolase of the parasite Trypanosoma vivax, crystallographic and mutagenesis studies failed to identify a general acid. This enzyme binds the purine base of the substrate between the aromatic side-chains of Trp83 and Trp260. Here, we show via quantum chemical calculations that face-to-face stacking can raise the pKa of a heterocyclic aromatic compound by several units. Site-directed mutagenesis combined with substrate engineering demonstrates that Trp260 catalyzes the cleavage of the glycosidic bond by promoting the protonation of the purine base at N-7, hence functioning as an alternative to general acid catalysis.  相似文献   

20.
3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) lyase is a key enzyme in the ketogenic pathway that supplies metabolic fuel to extrahepatic tissues. Enzyme deficiency may be due to a variety of human mutations and can be fatal. Diminished activity has been explained based on analyses of recombinant human mutant proteins or, more recently, in the context of structural models for the enzyme. We report the experimental determination of a crystal structure at 2.1 A resolution of the recombinant human mitochondrial HMG-CoA lyase containing a bound activator cation and the dicarboxylic acid 3-hydroxyglutarate. The enzyme adopts a (betaalpha)(8) barrel fold, and the N-terminal barrel end is occluded. The structure of a physiologically relevant dimer suggests that substrate access to the active site involves binding across the cavity located at the C-terminal end of the barrel. An alternative hypothesis that involves substrate insertion through a pore proposed to extend through the barrel is not compatible with the observed structure. The activator cation ligands included Asn(275), Asp(42),His(233), and His(235); the latter three residues had been implicated previously as contributing to metal binding or enzyme activity. Arg(41), previously shown to have a major effect on catalytic efficiency, is also located at the active site. In the observed structure, this residue interacts with a carboxyl group of 3-hydroxyglutarate, the hydrolysis product of the competitive inhibitor 3-hydroxyglutaryl-CoA required for crystallization of human enzyme. The structure provides a rationale for the decrease in enzyme activity due to clinical mutations, including H233R, R41Q, D42H, and D204N, that compromise active site function or enzyme stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号