首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
K Rippe  N B Ramsing  T M Jovin 《Biochemistry》1989,28(24):9536-9541
DNA strands with appropriate sequences of dA and dT can form a stable duplex in which the two strands adopt a parallel (ps) instead of the conventional antiparallel (aps) orientation. Four 25-nt dA.dT-containing deoxyoligonucleotides (D1-4) were synthesized. D1 has the sequence 5'-dA10TA2T4A3TAT3-3'. Viewed with the same polarity, D2, D3, and D4 are the complement, inverted complement, and inverse of D1, respectively. The two combinations D1.D3 and D2.D4 form conventional antiparallel duplexes (aps-D1.D3, aps-D2.D4). D1.D2 and D3.D4, however, constitute stable parallel-stranded duplexes (ps-D1.D2, ps-D3.D4), as established by various criteria including the following: (i) The electrophoretic mobilities of ps-D1.D2 and ps-D3.D4 are similar to those of the antiparallel-stranded duplexes. (ii) The ultraviolet absorption and circular dichroism spectra of the ps duplexes are indicative of a base-paired structure, but differ systematically from those of the aps helices. (iii) Similar salt-dependent thermal transitions are observed for the four duplexes, but the melting temperatures of the ps molecules are lower by 13-18 degrees C.  相似文献   

2.
Parallel stranded duplex DNA.   总被引:6,自引:4,他引:2       下载免费PDF全文
Three linear 21-nt oligonucleotides (C2, C3, C7) have been synthesized with different sequences of A and T residues. One pairwise combination, (C3, C7), hybridizes to form a conventional antiparallel duplex (aps-C3.C7), whereas the pair C2, C3 forms a duplex (ps-C2.C3) in which the two strands are in a parallel orientation and the A.T base-pairs in a reverse Watson-Crick configuration. The existence of the novel ps helical structure was established from the following criteria: (i) The electrophoretic mobilities of the ps and aps duplexes in native and denaturing polyacrylamide gels are similar. (ii) The ps duplex is not a substrate for T4 DNA ligase. (iii) Salt-dependent thermal transitions are observed for the two duplexes, but the melting temperatures of the ps molecules are 15 degrees C lower. (iv) The ultraviolet absorption and circular dichroism spectra of the ps duplex are indicative of a base-paired structure, but differ systematically from that of the aps helix. (v) Based on fluorescent measurements, the bis-benzimidazole drug BBI-258 shows a lower affinity for the ps compared to the aps duplex, whereas the opposite preference holds for the intercalator ethidium bromide. We conclude from the present study that parallel stranded DNA is a stable conformation which can arise by interaction between two conventional strands with appropriate sequence homology.  相似文献   

3.
N B Ramsing  K Rippe  T M Jovin 《Biochemistry》1989,28(24):9528-9535
The stabilities have been determined of different DNA double helices constructed with the two constituent strands in a parallel orientation. These molecules incorporate polarity-inverting loop structures (hairpins) or nucleotide sequences (duplexes) which impose the desired polarity on the two strands constituting the sugar-phosphate backbone. The hairpins consisted of d(A.T)n stems (n = 8 or 10) and either a 5'-p-5' linkage in a d(C)4 loop (ps-C8 and ps-C10) or a 3'-p-3' linkage in a d(G)4 loop (ps-G10). The linear duplexes had 21-nt (ps-C2.C3) and 25-nt (ps-D1.D2, ps-D3.D4) mixed A,T sequences and normal chemical linkages throughout. Reference molecules with normal antiparallel helical orientations (hairpins aps-C8, aps-C10, and aps-G10 and duplexes aps-C3.C7, aps-D1.D3, and aps-D2.D4) were also synthesized and studied. Hydrogen bonding in ps-DNA is via reverse Watson-Crick base pairs, and the various constructs display spectroscopic, chemical, biochemical, and electrophoretic properties distinct from those of their aps counterparts. For example, both the ps and aps molecules show a pronounced UV absorption hyperchromicity upon melting, but the spectral distribution is not the same. Thus, the difference spectra (ps-aps) in the native state are characterized by a positive peak at 252 nm, an isosbestic point at 267 nm, and a negative peak at 282 nm. Temperature-dependent absorbances were recorded at selected wavelengths and in the form of complete spectra to derive the thermodynamic parameters for the helix-coil transitions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Reactivity of parallel-stranded DNA to chemical modification reagents   总被引:4,自引:0,他引:4  
J Klysik  K Rippe  T M Jovin 《Biochemistry》1990,29(42):9831-9839
Four 25-nt long oligonucleotides containing dA and dT (D1, D2, D3, and D4) which are capable of forming parallel-stranded (ps) or antiparallel-stranded (aps) duplexes have been synthesized [Rippe, K., Ramsing, N. B., & Jovin, T. M. (1989) Biochemistry 28, 9536-9541]. In the present study, the OsO4-pyridine complex (Os,py), diethyl pyrocarbonate (DEPC), KMnO4, and the 1,10-phenanthroline-cuprous complex [(OP)2Cu+] were used to investigate the conformation-dependent reactivity of ps, aps, and single-stranded (ss) oligonucleotides. The products were analyzed by polyacrylamide gel electrophoresis with single-nucleotide resolution. The results confirm the duplex nature of the ps combinations of oligonucleotides and reveal structural differences in comparison with the aps molecules. Under conditions in which ss-DNA is substantially sensitive to Os,py, both the ps and aps duplexes are very unreactive. A similar result was observed with KMnO4 and DEPC, although with the latter reagent the modification pattern of the labeled strands D1* and D4* was slightly different for the parallel than for the antiparallel duplex. The (OP)2Cu+ complex efficiently cleaves the aps but not the ps duplex and shows a preference for TAT steps. We also tested the effect of monovalent and divalent cation concentrations on the chemical reactivity of the ps, aps, and ss species. Elevated NaCl concentration leads to a dramatic increase in the Os,py and KMnO4 modification of ss molecules and the ps, but not the aps, duplex. We attribute the apparent reaction with ps-DNA to a destabilization of this conformation under the conditions of reaction. In contrast, all reactions with DEPC are somewhat depressed at high salt concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Relative stability of parallel- and antiparallel-stranded duplex DNA   总被引:3,自引:0,他引:3  
  相似文献   

6.
The base pairing properties of oligonucleotide duplexes containing 8-aza-7-deaza-2′-deoxyisoguanosine, its 7-bromo or its 7-iodo derivative are described. The nucleosides were synthesized on a convergent route, protected and converted into phosphoramidites. Oligonucleotides were prepared on a solid-phase and were hybridized to yield duplexes with parallel (ps) or antiparallel (aps) chain orientation. The 8-aza-7-deaza-2′-deoxyisoguanosine-containing duplexes show almost identical base pairing stability as those containing 2′-deoxyisoguanosine, while the 7-substituted derivatives induce a significant duplex stabilization both in ps and aps DNA. Self-complementary duplexes with parallel chain orientation are exceptionally stable due to the presence of 5′-overhangs. The bulky halogen substituents were found to be well accommodated in the grooves both of aps and ps DNA.  相似文献   

7.
The dynamics and stability of four DNA duplexes are studied by means of molecular dynamics simulations. The four molecules studied are combinations of 4, 15 bases long, single-stranded oligomers, F1, F2, F3, and F4. The sequence of these single strand oligomers are chosen such that F1-F2 and F3-F4 form parallel (ps) DNA double helices, whereas F1-F4 and F2-F3 form antiparallel-stranded (aps) DNA double helices. Simulations were done at low (100 K) and room (300 K) temperatures. At low temperatures the dynamics are quasi-harmonic and the analysis of the trajectories gives good estimates of the low frequency vibrational modes and density of states. These are used to estimate the linear (harmonic) contribution of local fluctuations to the configurational entropy of the systems. Estimates of the differences in enthalpy between ps and aps duplexes show that aps double helices are more stable than the corresponding ps duplexes, in agreement with experiments. At higher temperatures, the distribution of the fluctuations around the average structures are multimodal and estimates of the configurational entropy cannot be obtained. The multi-basin, nonlinear character of the dynamics at 300 K is established using a novel method which extracts large amplitude nonlinear motions from the molecular dynamics trajectories. Our analysis shows that both ps DNA exhibit much larger fluctuations than the two aps DNA. The large fluctuations of ps DNA are explained in terms of correlated transitions in the beta, epsilon, and zeta backbone dihedral angles.  相似文献   

8.
A parallel stranded linear DNA duplex incorporating dG.dC base pairs   总被引:3,自引:0,他引:3  
DNA oligonucleotides with appropriately designed complementary sequences can form a duplex in which the two strands are paired in a parallel orientation and not in the conventional antiparallel double helix of B-DNA. All parallel stranded (ps) molecules reported to date have consisted exclusively of dA.dT base pairs. We have substituted four dA.dT base pairs of a 25-nt parallel stranded linear duplex (ps-D1.D2) with dG.dC base pairs. The two strands still adopt a duplex structure with the characteristic spectroscopic properties of the ps conformation but with a reduced thermodynamic stability. Thus, the melting temperature of the ps duplex with four dG.dC base pairs (ps-D5.D6) is 10-16 degrees C lower and the van't Hoff enthalpy difference delta HvH for the helix-coil transition is reduced by 20% (in NaCl) and 10% (in MgCl2) compared to that of ps-D1.D2. Based on energy minimizations of a ps-[d(T5GA5).d(A5CT5)] duplex using force field calculations we propose a model for the conformation of a trans dG.dC base pair in a ps helix.  相似文献   

9.
DNA oligonucleotides with dA and dU residues can form duplexes with trans d(A · U) base pairing and the sugar-phosphate backbone in a parallel-stranded orientation, as previously established for oligonucleotides with d(A · T) base pairs. The properties of such parallel-stranded DNA (ps-DNA) 25-mer duplexes have been characterized by absorption (uv), CD, ir, and fluorescence spectroscopy, as well as by nuclease sensitivity. Comparisons were made with duplex molecules containing (a) dT in both strands, (b) dU in one strand and dT in the second, and (c) the same base combinations in reference antiparallel-stranded (aps) structures. Thermodynamic analysis revealed that total replacement of deoxythymine by deoxyuridine was accompanied by destabilization of the ps-helix (reduction in Tm by −13°C in 2 mM MgGl2, 10 mM Na-cacodylate). The U-containing ps-helix (U1 · U2) also melted 14°C lower than the corresponding aps-helix under the same ionic conditions; this difference was very close to that observed between ps and aps duplexes with d(A · T) base pairs. Force field minimized structures of the various ps and aps duplexes with either d(A · T) or d(A · U) base pairs ps/aps and dT/dU combinations are presented. The energy-minimized helical parameters did not differ significantly between the DNAs containing dT and dU. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
The crystal structure of the duplex formed by oligo(2',3'-dideoxy-beta-d-glucopyranosyl)nucleotides (homo-DNA) revealed strongly inclined backbone and base-pair axes [Egli,M., Pallan,P.S., Pattanayek,R., Wilds,C.J., Lubini,P., Minasov,G., Dobler,M., Leumann,C.J. and Eschenmoser,A. (2006) Crystal structure of homo-DNA and nature's choice of pentose over hexose in the genetic system. J. Am. Chem. Soc., 128, 10847-10856]. This inclination is easily perceived because homo-DNA exhibits only a modest helical twist. Conversely, the tight coiling of strands conceals that the backbone-base inclinations for A- (DNA and RNA) and B-form (DNA) duplexes differ considerably. We have defined a parameter eta(B) that corresponds to the local inclination between sugar-phosphate backbone and base plane in nucleic acid strands. Here, we show its biological significance as a predictive measure for the relative strand polarities (antiparallel, aps, or parallel, ps) in duplexes of DNA, RNA and artificial nucleic acid pairing systems. The potential of formation of ps duplexes between complementary 16-mers with eight A and U(T) residues each was investigated with DNA, RNA, 2'-O-methylated RNA, homo-DNA and p-RNA, the ribopyranosyl isomer of RNA. The thermodynamic stabilities of the corresponding aps duplexes were also measured. As shown previously, DNA is capable of forming both ps and aps duplexes. However, all other tested systems are unable to form stable ps duplexes with reverse Watson-Crick (rWC) base pairs. This observation illustrates the handicap encountered by nucleic acid systems with inclinations eta(B) that differ significantly from 0 degrees to form a ps rWC paired duplex. Accordingly, RNA with a backbone-base inclination of -30 degrees , pairs strictly in an aps fashion. On the other hand, the more or less perpendicular orientation of backbone and bases in DNA allows it to adopt a ps rWC paired duplex. In addition to providing a rationalization of relative strand polarity with nucleic acids, the backbone-base inclination parameter is also a determinant of cross-pairing. Thus, systems with strongly deviating eta(B) angles will not pair with each other. Nucleic acid pairing systems with significant backbone-base inclinations can also be expected to display different stabilities depending on which terminus carries unpaired nucleotides. The negative inclination of RNA is consistent with the higher stability of duplexes with 3'- compared to those with 5'-dangling ends.  相似文献   

11.
J Klysik  K Rippe    T M Jovin 《Nucleic acids research》1991,19(25):7145-7154
DNA oligonucleotides with appropriate sequences can form a stable duplex in which the two strands are paired in a parallel orientation instead of as the conventional antiparallel double helix of B-DNA. In parallel-stranded DNA (ps-DNA) base pairing is noncanonical with the glycosidic bonds in a trans orientation. The two grooves are equivalent. We have synthesized DNA duplexes consisting of a central parallel-stranded (dA)15.(dT)15 tract flanked by normal antiparallel regions, and ligated them into the pUC18 plasmid. The effect of negative supercoiling on the covalently closed circular molecules was studied by two-dimensional agarose gel electrophoresis and by chemical modification with OsO4-pyridine (Os,py) and diethylpyrocarbonate (DEPC). The following results were obtained: (i) The ps insert, and by inference ps-DNA in general, adopts a right handed helical form. (ii) Upon increasing the negative superhelix density (-sigma) to greater than 0.03 the 15 bp ps insert undergoes a major transition leading to a relaxation corresponding to a reduction in twist of approximately 2.5 helical turns. The transition free surgery is approximately kcal/mol. (iii) The chemical modification pattern of the resulting structure suggests that the purine strand folds back and associates with the pyrimidine strand, forming a novel intramolecular triplex structure consisting of d(A.A.T) base triplets. A model for the triplex conformation is proposed and its thermodynamic properties are analyzed by statistical mechanics.  相似文献   

12.
Abstract

DNA oligonucleotides with appropriately designed complementary sequences can form a duplex in which the two strands are paired in a parallel orientation and not in the conventional antiparallel double helix of B-DNA. All parallel stranded (ps) molecules reported to date have consisted exclusively of dA · dT base pairs. We have substituted four dA · dT base pairs of a 25-nt parallel stranded linear duplex (ps-D1 · D2) with dG · dC base pairs. The two strands still adopt a duplex structure with the characteristic spectroscopic properties of the ps conformation but with a reduced thermodynamic stability. Thus, the melting temperature of the ps duplex with four dG · dC base pairs (ps-D5 · D6) is 10-16°C lower and the van't Hoff enthalpy difference ΔvH for the helix-coil transition is reduced by 20% (in NaCl) and 10% (in MgCl2) compared to that of ps-Dl · D2. Based on energy minimizations of a ps-[d(T5GA5) · d(A5CT5)] duplex using force field calculations we propose a model for the conformation of a trans dG · dC base pair in a ps helix.  相似文献   

13.
The binding of actinomycin D (C1, 1) and its analog actinomin (2) was studied on base-modified oligonucleotide duplexes with parallel chain orientation (ps) and with anti-parallel chains (aps) for comparison. Actinomycin D binds not only to aps duplexes containing guanine-cytosine base pairs but also to those incorporating modified bases such as 7-deazaguanine or its 6-deoxo derivative. For this, novel phosphoramidites were prepared. The new building block of 7-deaza-2'-deoxyguanosine is significantly more stable than the one currently used and allows normal oxidation conditions during solid-phase oligonucleotide synthesis. Actinomycin binds weakly to ps duplexes containing guanine-isocytosine base pairs but not to ps-DNA incorporating pairs of isoguanine-cytosine residues. On the contrary, the actinomycin D analog actinomin, which contains positively charged side chains instead of the chiral peptide rings, is strongly bound to both ps- and aps-DNA. Guanines, isoguanine, as well as other 7-deaza derivatives are accepted as nucleobases. Apparently, the pentapeptide lacton rings of actinomycin do not fit nicely into the groove of ps-DNA thereby reducing the binding strength of the antibiotic while the groove size of ps-DNA does not affect actinomin binding notably.  相似文献   

14.
Raman spectra of the parallel-stranded duplex formed from the deoxyoligonucleotides 5'-d-[(A)10TAATTTTAAATATTT]-3' (D1) and 5'-d[(T)10ATTAAAATTTATAAA]-3' (D2) in H2O and D2O have been acquired. The spectra of the parallel-stranded DNA are then compared to the spectra of the antiparallel double helix formed from the deoxyoligonucleotides D1 and 5'-d(AAATATTTAAAATTA-(T)10]-3' (D3). The Raman spectra of the antiparallel-stranded (aps) duplex are reminiscent of the spectra of poly[d(A)].poly[d(T)] and a B-form structure similar to that adopted by the homopolymer duplex is assigned to the antiparallel double helix. The spectra of the parallel-stranded (ps) and antiparallel-stranded duplexes differ significantly due to changes in helical organization, i.e., base pairing, base stacking, and backbone conformation. Large changes observed in the carbonyl stretching region (1600-1700 cm-1) implicate the involvement of the C(2) carbonyl of thymine in base pairing. The interaction of adenine with the C(2) carbonyl of thymine is consistent wtih formation of reverse Watson-Crick base pairing in parallel-stranded DNA. Phosphate-furanose vibrations similar to those observed for B-form DNA of heterogenous sequence and high A,T content are observed at 843 and 1092 cm-1 in the spectra of the parallel-stranded duplex. The 843-cm-1 band is due to the presence of a sizable population of furanose rings in the C2'-endo conformation. Significant changes observed in the regions from 1150 to 1250 cm-1 and from 1340 to 1400 cm-1 in the spectra of the parallel-stranded duplex are attributed to variations in backbone torsional and glycosidic angles and base stacking.  相似文献   

15.
The culture medium of Pseudomonas BAL 31 contains endonuclease activities which are highly specific for single-stranged DNA and for the single-stranded or weakly hydrogen-bonded regions in supercoiled closed circular DNA. Exposure of nicked DNA to the culture medium results in cleavage of the strang opposite the sites of preexisting single-strand scissions. At least some of the linear duplex molecules derived by cleavage of supercoiled closed circular molecules contain short single-stranded ends. Single-strand scissions are not introduced into intact, linear duplex DNA or unsupercoiled covalently closed circular DNA. Under these same reaction conditions, 0X174 phage DNA is extensively degraded and PM2 form I DNA is quantitatively converted to PM2 form III linear duplexes. Prolonged exposure of this linear duplex DNA to the concentrated culture medium reveals the presence of a double-strand exonuclease activity that progressively reduces the average length of the linear duplex. These nuclease activities persist at ionic strengths up to 4 M and are not eliminated in the presence of 5% sodium dodecyl sulfate. Calcium and magnesium ion are both required for optimal activity. Although the absence of magnesium ion reduces the activities, the absence of calcium ion irreversibly eliminates all the activities.  相似文献   

16.
Peplomycin-mediated degradation of parallel-stranded (ps) duplex was investigated. It was found that Co- and Fe-peplomycins degraded ps DNA duplex by 4'-hydrogen abstraction at 5'-GPy (pyrimidine) site in a similar manner to that of antiparallel B-DNA. While the orientation of two strands of ps and B-form DNA duplexes are reversed, peplomycin metal complex can bind to ps DNA duplex to cause oxidative DNA damage. These results indicate that peplomycin metal complex mainly interacts with one strand which is damaged.  相似文献   

17.
Homopurine deoxyribonucleoside phosphorothioates possessing all internucleotide linkages of R(P) configuration form a duplex with an RNA or 2'-OMe-RNA strand with Hoogsteen complementarity. The duplexes formed with RNA templates are thermally stable at pH 5.3, while those formed with a 2'-OMe-RNA are stable at neutrality. Melting temperature and fluorescence quenching experiments indicate that the strands are parallel. Remarkably, these duplexes are thermally more stable than parallel Hoogsteen duplexes and antiparallel Watson-Crick duplexes formed by unmodified homopurine DNA molecules of the same sequence with corresponding RNA templates.  相似文献   

18.
We describe a novel activity of the SV40 large T-ag helicase, the unwinding of four stranded DNA structures linked by stacked G-quartets, namely stacked groups of four guanine bases bound by Hoogsteen hydrogen bonds. The structures unwound by the helicase were of two types: (i) quadruplexes comprising four parallel strands that were generated by annealing oligonucleotides including clustered G residues in a buffer containing Na+ions. Each parallel quadruplex consisted of four oligonucleotide molecules. (ii) Complexes comprising two parallel and two antiparallel strands that were generated by annealing the above oligonucleotides in a buffer containing K+ions. Each antiparallel complex consisted of two folded oligonucleotide molecules. Unwinding of these unusual DNA structures by the T-ag was monitored by gel electrophoresis. The unwinding process required ATP and at least one single stranded 3'-tail extending beyond the four stranded region. These data indicated that the T-ag first binds the 3'-tail and moves in a 3'-->5'direction, using energy provided by ATP hydrolysis; then it unwinds the four stranded DNA into single strands. This helicase activity may affect processes such as recombination and telomere extension, in which four stranded DNA could play a role.  相似文献   

19.
Summary The organization of repetitive and single copy DNA sequences in sea urchin DNA has been examined with the single strand specific nuclease Sl fromAspergillus. Conditions and levels of enzyme were established so that single strand DNA was effectively digested while reassociated divergent repetitive duplexes remained enzyme resistant. About 25% of sea urchin DNA reassociates with repetitive kinetics to form Sl resistant duplexes of two distinct size classes derived from long and short repetitive sequences in the sea urchin genome. Fragments 2,000 nucleotides long were reassociated to Cot 20 and subjected to controlled digestion with Sl nuclease. About half of the resistant duplexes (13% of the DNA) are short, with a mode size of about 300 nucleotide pairs. This class exhibits significant sequence divergence, and principally consists of repetitive sequences which were interspersed with single copy sequences. About one-third of the long duplexes (4% of the DNA) are reduced in size after extensive Sl nuclease digestion to about 300 nucleotide pairs. About two-thirds of the long resistant duplexes (8% of the DNA) remains long after extensive SI nuclease digestion. These long reassociated duplexes are precisely base paired. The short duplexes are imprecisely paired with a melting temperature about 9°C below that of precisely paired duplexes of the same length. The relationship between length of repetitive duplex and precision of repetition is confirmed by an independent method and has been observed in the DNA of a number of species over a wide phylogenetic area.Also Staff Member, Carnegie Institution of Washington  相似文献   

20.
Abstract

Oligodeoxyribonucleotides containing dA·dU base combinations were shown to form parallel stranded DNA. CD spectra and hyperchromicity profiles provide evidence that the structure is very similar to that of a related parallel stranded dA·oligomer. Thermal denaturation studies show that these parallel dAdU sequences are significantly less stable than their dA·analogues in either antiparallel or parallel stranded orientations. The stabilizing effect of the 5- methyl group is similar for parallel and antiparallel sequences. The minor groove binding drug Hoechst 33258 binds with similar affinity to APS dA·and APS dA·dU sequences. However, binding to the PS dA·hairpin is significantly impaired as a consequence of the different groove dimensions and the presence of thymine methyl groups at the binding site. This results in an 8.6 kJmoF reduced free energy of binding for the PS dA·sequence. Replacement of the bulky methyl group with a hydrogen (ie. T -> U) results in significantly stronger Hoechst 33258 binding to the parallel dA·dU sequences with a penalty of only 4.1 kJmol?1. Our data demonstrate that although Hoechst 33258 detects the altered groove, it is still able to bind a PS duplex containing dA·dU base pairs with high affinity, despite the large structural differences from its regular binding site in APS DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号