首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epithelial-mesenchymal interactions promote the morphogenesis and homeostasis of human skin. However, the role of the basement membrane (BM) during this process is not well-understood. To directly study how BM proteins influence epidermal differentiation, survival and growth, we developed novel 3D human skin equivalents (HSEs). These tissues were generated by growing keratinocytes at an air-liquid interface on polycarbonate membranes coated with individual matrix proteins (Type I Collagen, Type IV Collagen or fibronectin) that were placed on contracted Type I Collagen gels populated with dermal fibroblasts. We found that only keratinocytes grown on membranes coated with the BM protein Type IV Collagen showed optimal tissue architecture that was similar to control tissues grown on de-epidermalized dermis (AlloDerm) that contained intact BM. In contrast, tissues grown on proteins not found in BM, such as fibronectin and Type I Collagen, demonstrated aberrant tissue architecture that was linked to a significant elevation in apoptosis and lower levels of proliferation of basal keratinocytes. While all tissues demonstrated a normalized, linear pattern of deposition of laminin 5, tissues grown on Type IV Collagen showed elevated expression of alpha6 integrin, Type IV Collagen and Type VII Collagen, suggesting induction of BM organization. Keratinocyte differentiation (Keratin 1 and filaggrin) was not dependent on the presence of BM proteins. Thus, Type IV Collagen acts as a critical microenvironmental factor in the BM that is needed to sustain keratinocyte growth and survival and to optimize epithelial architecture.  相似文献   

2.
《The Journal of cell biology》1994,127(4):1049-1060
In epidermal cells, keratin intermediate filaments connect with desmosomes to form extensive cadherin-mediated cytoskeletal architectures. Desmoplakin (DPI), a desmosomal component lacking a transmembrane domain, has been implicated in this interaction, although most studies have been conducted with cells that contain few or no desmosomes, and efforts to demonstrate direct interactions between desmoplakin and intermediate filaments have not been successful. In this report, we explore the biochemical nature of the connections between keratin filaments and desmosomes in epidermal keratinocytes. We show that the carboxy terminal "tail" of DPI associates directly with the amino terminal "head" of type II epidermal keratins, including K1, K2, K5, and K6. We have engineered and purified recombinant K5 head and DPI tail, and we demonstrate direct interaction in vitro by solution- binding assays and by ligand blot assays. This marked association is not seen with simple epithelial type II keratins, vimentin, or with type I keratins, providing a possible explanation for the greater stability of the epidermal keratin filament architecture over that of other cell types. We have identified an 18-amino acid residue stretch in the K5 head that is conserved only among type II epidermal keratins and that appears to play some role in DPI tail binding. This finding might have important implications for understanding a recent point mutation found within this binding site in a family with a blistering skin disorder.  相似文献   

3.
Recently, a family of temperature-activated ion channels has been identified in mammalian and nonmammalian species that appear to contribute to thermosensation. Two of these proteins, TRPV3 and TRPV4, are ion channels activated by modest increases in ambient temperature. Localization studies have indicated that both proteins, in addition to being expressed in sensory neurons, are also expressed in skin keratinocytes. These and other findings have suggested that keratinocytes might act in concert with sensory neurons to perceive our thermal environment. In this study, we demonstrate that primary keratinocytes isolated from mouse skin exhibit two distinct heat-evoked current responses to mild increases in ambient temperature. The more common of these response types bears considerable similarity to responses mediated by recombinant TRPV4, is absent in mice lacking this ion channel, and is restored upon TRPV4 reintroduction. The second, rarer response strongly resembles those mediated by recombinant TRPV3. Together, these findings demonstrate that keratinocytes can indeed act as thermosensory cells and that they do so via at least two distinct transduction mechanisms.  相似文献   

4.
In response to cutaneous injury, expression of collagenase-1 is induced in keratinocytes via alpha2beta1 contact with native type I collagen, and enzyme activity is essential for cell migration over this substratum. However, the cellular mechanism(s) mediating integrin signaling remain poorly understood. We demonstrate here that treatment of keratinocytes cultured on type I collagen with epidermal growth factor receptor (EGFR) blocking antibodies or a specific receptor antagonist inhibited cell migration across type I collagen and the matrix-directed stimulation of collagenase-1 production. Additionally, stimulation of collagenase-1 expression by hepatocyte growth factor, transforming growth factor-beta1, and interferon-gamma was blocked by EGFR inhibitors, suggesting a required EGFR autocrine signaling step for enzyme expression. Collagenase-1 mRNA was not detectable in keratinocytes isolated immediately from normal skin, but increased progressively following 2 h of contact with collagen. In contrast, EGFR mRNA was expressed at high steady-state levels in keratinocytes isolated immediately from intact skin but was absent following 2 h cell contact with collagen, suggesting down-regulation following receptor activation. Indeed, tyrosine phosphorylation of the EGFR was evident as early as 10 min following cell contact with collagen. Treatment of keratinocytes cultured on collagen with EGFR antagonist or heparin-binding (HB)-EGF neutralizing antibodies dramatically inhibited the sustained expression (6-24 h) of collagenase-1 mRNA, whereas initial induction by collagen alone (2 h) was unaffected. Finally, expression of collagenase-1 in ex vivo wounded skin and re-epithelialization of partial thickness porcine burn wounds was blocked following treatment with EGFR inhibitors. These results demonstrate that keratinocyte contact with type I collagen is sufficient to induce collagenase-1 expression, whereas sustained enzyme production requires autocrine EGFR activation by HB-EGF as an obligatory intermediate step, thereby maintaining collagenase-1-dependent migration during the re-epithelialization of epidermal wounds.  相似文献   

5.
Transforming growth factor-alpha(TGF-alpha), homologous to epidermal growth factor(EGF), is closely involved in hyperproliferation of human keratinocytes. Psoriasis is a common hyperproliferative skin disease characterized by hyperproliferation of keratinocytes and abnormal development of dermal capillary networks. In this study, we have examined whether keratinocytes could enhance angiogenesis. TGF-alpha or EGF efficiently stimulated formation of tubular-like structures of human omental microvascular endothelial(HOME) cells in type I collagen gels. Human keratinocytes produced TGF-alpha. To examine whether co-cultured keratinocytes could induce tubulogenesis of HOME cells in collagen gel, we have developed a co-culture system with human keratinocytes. Surprisingly, there appeared new development of many tubular-like structures of HOME cells in collagen gels when co-cultured with keratinocytes. This keratinocytes-dependent tubulogenesis was almost completely blocked when anti-TGF-alpha-antibody was present. The TGF-alpha molecules derived from keratinocytes appeared to enhance tubulogenesis of human microvascular endothelial cells. We propose the hypothesis that secretory TGF-alpha from human keratinocytes may promote an autocrine loop to proliferate the skin keratinocytes and also a paracrine loop to induce the skin angiogenesis.  相似文献   

6.
Single cell suspensions of human keratinocytes when seeded onto floating three-dimensional gels constructed with type I collagen form a tissue resembling epidermis. These morphogenetic events occur in a serum-free environment in the absence of fibroblasts. Light and transmission electron microscopy show that cells form a basal layer plus suprabasilar cell layers corresponding to the stratum spinosum, stratum granulosum, and stratum corneum. The suprabasilar keratinocyte layers show morphologies which resemble intact skin in which cells are connected by desmosomes and contain intermediate filaments and keratohyalin-fillagrin granules. The basal cell layer differs from skin in vivo in that there is no connection to a basement membrane via hemidesmosomes. Cells in the basal layers are polarized as evidenced by the secretion of type IV collagen, heparan sulfate proteoglycans, and laminin at the cell membrane interface with the collagen gel. These proteins are not organized into a cytological basement membrane. Bullous pemphigoid antigen, a protein component of hemidesmosomes, is synthesized by basal keratinocytes, but like the basement membrane proteins it is not incorporated into a definable cytological structure. Keratinocytes in the basal and suprabasilar layers also synthesize alpha 2 beta 1 integrins. The mechanisms of keratinocyte adhesion to the gel may be through the interactions of this cell surface receptor with laminin and type IV collagen synthesized by the cell and/or direct interactions between the receptor and type I collagen within the gel. This in vitro experimental system is a useful model for defining the molecular events which control the formation and turnover of basement membranes and the mechanisms by which keratinocytes adhere to type I collagen when sheets of keratinocytes are used clinically for wound coverage.  相似文献   

7.
Rohon-Beard mechanosensory neurons (RBs), neural crest cells, and neurogenic placodes arise at the border of the neural- and non-neural ectoderm during anamniote vertebrate development. Neural crest cells require BMP expressing non-neural ectoderm for their induction. To determine if epidermal ectoderm-derived BMP signaling is also involved in the induction of RB sensory neurons, the medial region of the neural plate from donor Xenopus laevis embryos was transplanted into the non-neural ventral ectoderm of host embryos at the same developmental stage. The neural plate border and RBs were induced at the transplant sites, as shown by expression of Xblimp1, and XHox11L2 and XN-tubulin, respectively. Transplantation studies between pigmented donors and albino hosts showed that neurons are induced both in donor neural and host epidermal tissue. Because an intermediate level of BMP4 signaling is required to induce neural plate border fates, we directly tested BMP4′s ability to induce RBs; beads soaked in either 1 or 10 ng/ml were able to induce RBs in cultured neural plate tissue. Conversely, RBs fail to form when neural plate tissue from embryos with decreased BMP activity, either from injection of noggin or a dominant negative BMP receptor, was transplanted into the non-neural ectoderm of un-manipulated hosts. We conclude that contact between neural and non-neural ectoderm is capable of inducing RBs, that BMP4 can induce RB markers, and that BMP activity is required for induction of ectopic RB sensory neurons.  相似文献   

8.
The evolution of the nervous system has been a topic of great interest. To gain more insight into the evolution of the peripheral sensory system, we used the cephalochordate amphioxus. Amphioxus is a basal chordate that has a dorsal central nervous system (CNS) and a peripheral nervous system (PNS) comprising several types of epidermal sensory neurons (ESNs). Here, we show that a proneural basic helix-loop-helix gene (Ash) is co-expressed with the Delta ligand in ESN progenitor cells. Using pharmacological treatments, we demonstrate that Delta/Notch signaling is likely to be involved in the specification of amphioxus ESNs from their neighboring epidermal cells. We also show that BMP signaling functions upstream of Delta/Notch signaling to induce a ventral neurogenic domain. This patterning mechanism is highly similar to that of the peripheral sensory neurons in the protostome and vertebrate model animals, suggesting that they might share the same ancestry. Interestingly, when BMP signaling is globally elevated in amphioxus embryos, the distribution of ESNs expands to the entire epidermal ectoderm. These results suggest that by manipulating BMP signaling levels, a conserved neurogenesis circuit can be initiated at various locations in the epidermal ectoderm to generate peripheral sensory neurons in amphioxus embryos. We hypothesize that during chordate evolution, PNS progenitors might have been polarized to different positions in various chordate lineages owing to differential regulation of BMP signaling in the ectoderm.  相似文献   

9.
Most in vitro studies in experimental skin biology have been done in 2-dimensional (2D) monocultures, while accumulating evidence suggests that cells behave differently when they are grown within a 3D extra-cellular matrix and also interact with other cells (1-5). Mouse models have been broadly utilized to study tissue morphogenesis in vivo. However mouse and human skin have significant differences in cellular architecture and physiology, which makes it difficult to extrapolate mouse studies to humans. Since melanocytes in mouse skin are mostly localized in hair follicles, they have distinct biological properties from those of humans, which locate primarily at the basal layer of the epidermis. The recent development of 3D human skin reconstruct models has enabled the field to investigate cell-matrix and cell-cell interactions between different cell types. The reconstructs consist of a "dermis" with fibroblasts embedded in a collagen I matrix, an "epidermis", which is comprised of stratified, differentiated keratinocytes and a functional basement membrane, which separates epidermis from dermis. Collagen provides scaffolding, nutrient delivery, and potential for cell-to-cell interaction. The 3D skin models incorporating melanocytic cells recapitulate natural features of melanocyte homeostasis and melanoma progression in human skin. As in vivo, melanocytes in reconstructed skin are localized at the basement membrane interspersed with basal layer keratinocytes. Melanoma cells exhibit the same characteristics reflecting the original tumor stage (RGP, VGP and metastatic melanoma cells) in vivo. Recently, dermal stem cells have been identified in the human dermis (6). These multi-potent stem cells can migrate to the epidermis and differentiate to melanocytes.  相似文献   

10.
Neural induction of ectoderm cells has been reconstituted and examined in a microculture system derived from dissociated early gastrula cells of Xenopus laevis. We have used monoclonal antibodies as specific markers to monitor cellular differentiation from three distinct ectoderm lineages in culture (N1 for CNS neurons from neural tube, Me1 for melanophores from neural crest and E3 for skin epidermal cells from epidermal lineages). CNS neurons and melanophores differentiate when deep layer cells of the ventral ectoderm (VE, prospective epidermis region; 150 cells/culture) and an appropriate region of the marginal zone (MZ, prospective mesoderm region; 5-150 cells/culture) are co-cultured, but not in cultures of either cell type on their own; VE cells cultured alone yield epidermal cells as we have previously reported. The extent of inductive neural differentiation in the co-culture system strongly depends on the origin and number of MZ cells initially added to culture wells. The potency to induce CNS neurons is highest for dorsal MZ cells and sharply decreases as more ventrally located cells are used. The same dorsoventral distribution of potency is seen in the ability of MZ cells to inhibit epidermal differentiation. In contrast, the ability of MZ cells to induce melanophores shows the reverse polarity, ventral to dorsal. These data indicate that separate developmental mechanisms are used for the induction of neural tube and neural crest lineages. Co-differentiation of CNS neurons or melanophores with epidermal cells can be obtained in a single well of co-cultures of VE cells (150) and a wide range of numbers of MZ cells (5 to 100). Further, reproducible differentiation of both neural lineages requires intimate association between cells from the two gastrula regions; virtually no differentiation is obtained when cells from the VE and MZ are separated in a culture well. These results indicate that the inducing signals from MZ cells for both neural tube and neural crest lineages affect only nearby ectoderm cells.  相似文献   

11.
The matrix metalloproteinase stromelysin-2 is expressed in keratinocytes of the epithelial tongue of skin wounds, suggesting a role in keratinocyte migration. Here, we show that stromelysin-2 enhances migration of cultured keratinocytes. To gain insight into the in vivo activities of stromelysin-2 in epithelial repair, we generated transgenic mice expressing a constitutively active stromelysin-2 mutant in keratinocytes. These animals had no alterations in skin architecture, and the healing rate of skin wounds was normal. Histologically, however, we found abnormalities in the organization of the wound epithelium. Keratinocytes at the migrating epidermal tip were scattered in most sections of mice with high expression level, and there was a reduced deposition of new matrix. In particular, the staining pattern of laminin-5 at the wound site was altered. This may be due to proteolytic processing of laminin-5 by stromelysin-2, because degradation of laminin-5 by this enzyme was observed in vitro. The inappropriate matrix contact of keratinocytes was accompanied by aberrant localization of beta1-integrins and phosphorylated focal adhesion kinase, as well as by increased apoptosis of wound keratinocytes. These results suggest that a tightly regulated expression level of stromelysin-2 is required for limited matrix degradation at the wound site, thereby controlling keratinocyte migration.  相似文献   

12.
Vertebrate cranial placodes I. Embryonic induction   总被引:12,自引:0,他引:12  
Cranial placodes are focal regions of thickened ectoderm in the head of vertebrate embryos that give rise to a wide variety of cell types, including elements of the paired sense organs and neurons in cranial sensory ganglia. They are essential for the formation of much of the cranial sensory nervous system. Although relatively neglected today, interest in placodes has recently been reawakened with the isolation of molecular markers for different stages in their development. This has enabled a more finely tuned approach to the understanding of placode induction and development and in some cases has resulted in the isolation of inducing molecules for particular placodes. Both morphological and molecular data support the existence of a preplacodal domain within the cranial neural plate border region. Nonetheless, multiple tissues and molecules (where known) are involved in placode induction, and each individual placode is induced at different times by a different combination of these tissues, consistent with their diverse fates. Spatiotemporal changes in competence are also important in placode induction. Here, we have tried to provide a comprehensive review that synthesises the highlights of a century of classical experimental research, together with more modern evidence for the tissues and molecules involved in the induction of each placode.  相似文献   

13.
14.
Reconstituted skin from murine embryonic stem cells   总被引:16,自引:0,他引:16  
Embryonic stem (ES) cell lines can be expanded indefinitely in culture while maintaining their potential to differentiate into any cell type. During embryonic development, the skin forms as a result of reciprocal interactions between mesoderm and ectoderm. Here, we report the in vitro differentiation and enrichment of keratinocytes from murine ES cells seeded on extracellular matrix (ECM) in the presence of Bone Morphogenic Protein-4 (BMP-4) or ascorbate. The enriched preparation of keratinocytes was able to form an epidermal equivalent composed of a stratified epithelium when cultured at the air-liquid interface on a collagen-coated acellular substratum. Interestingly, an underlying cellular compartment that belongs to the fibroblast lineage was systematically formed between the reconstituted epidermis and the inert membrane. The resulting tissue displayed morphological patterns similar to normal embryonic skin, as evidenced by light and transmission electron microscopy. Immunohistochemical studies revealed expression patterns of cytokeratins, basement membrane (BM) proteins and late differentiation markers of epidermis, as well as fibroblast markers, similar to native skin. The results demonstrate the capacity of ES cells to reconstitute in vitro a fully differentiated skin. This ES-derived bioengineered skin provides a powerful tool for studying the molecular mechanisms controlling epidermal and dermal commitments.  相似文献   

15.
Single cell suspensions of human keratinocytes when seeded onto floating three-dimensional gels constructed with type I collagen form a tissue resembling epidermis. These morphogenetic events occur in a serum-free environment in the absence of fibroblasts. Light and transmission electron microscopy show that cells form a basal layer plus suprabasilar cell layers corresponding to the stratum spinosum, stratum granulosum, and stratum corneum. The suprabasilar keratinocyte layers show morphologies which resemble intact skin in which cells are connected by desmosomes and contain intermediate filaments and keratohyalin-fillagrin granules. The basal cell layer differs from skin in vivo in that there is no connection to a basement membrane via hemidesmosomes. Cells in the basal layers are polarized as evidenced by the secretion of type IV collagen, heparan sulfate proteoglycans, and laminin at the cell membrane interface with the collagen gel. These proteins are not organized into a cytological basement membrane. Bullous pemphigoid antigen, a protein component of hemidesmosomes, is synthesized by basal keratinocytes, but like the basement membrane proteins it is not incorporated into a definable cytological structure. Keratinocytes in the basal and suprabasilar layers also synthesize α2β1 integrins. The mechanisms of keratinocyte adhesion to the gel may be through the interactions of this cell surface receptor with laminin and type IV collagen synthesized by the cell and/or direct interactions between the receptor and type I collagen within the gel. This in vitro experimental system is a useful model for defining the molecular events which control the formation and turnover of basement membranes and the mechanisms by which keratinocytes adhere to type I collagen when sheets of keratinocytes are used clinically for wound coverage.  相似文献   

16.
Trigeminal fibers terminate within the facial mucosa and skin and transmit tactile, proprioceptive, chemical, and nociceptive sensations. Trigeminal sensations can arise from the direct stimulation of intraepithelial free nerve endings or indirectly through information transmission from adjacent cells at the peripheral innervation area. For mechanical and thermal cues, communication processes between skin cells and somatosensory neurons have already been suggested. High concentrations of most odors typically provoke trigeminal sensations in vivo but surprisingly fail to activate trigeminal neuron monocultures. This fact favors the hypothesis that epithelial cells may participate in chemodetection and subsequently transmit signals to neighboring trigeminal fibers. Keratinocytes, the major cell type of the epidermis, express various receptors that enable reactions to multiple environmental stimuli. Here, using a co-culture approach, we show for the first time that exposure to the odorant chemicals induces a chemical communication between human HaCaT keratinocytes and mouse trigeminal neurons. Moreover, a supernatant analysis of stimulated keratinocytes and subsequent blocking experiments with pyrodoxalphosphate-6-azophenyl-2′,4′-disulfonate revealed that ATP serves as the mediating transmitter molecule released from skin cells after odor stimulation. We show that the ATP release resulting from Javanol® stimulation of keratinocytes was mediated by pannexins. Consequently, keratinocytes act as chemosensors linking the environment and the trigeminal system via ATP signaling.  相似文献   

17.
Chronic exposure to sunlight may induce skin damage such as photoaging and photocarcinogenesis. These harmful effects are mostly caused by ultraviolet-B (UVB) rays. Yet, less is known about the contribution of low UVB doses to skin damage. The aim of this study was to determine the tissue changes induced by repeated exposure to a suberythemal dose of UVB radiation. Human keratinocytes in monolayer cultures and in skin equivalent were irradiated daily with 8 mJ/cm2 of UVB. Then structural, ultrastructural, and biochemical alterations were evaluated. The results show that exposure to UVB led to a generalized destabilization of the epidermis structure. In irradiated skin equivalents, keratinocytes displayed differentiated morphology and a reduced capacity to proliferate. Ultrastructural analysis revealed, not only unusual aggregation of intermediate filaments, but also disorganized desmosomes and larger mitochondria in basal cells. UVB irradiation also induced the secretion of metalloproteinase-9, which may be responsible for degradation of type IV collagen at the basement membrane. DNA damage analysis showed that both single and repeated exposure to UVB led to formation of (6-4) photoproducts and cyclobutane pyrimidine dimers. Although the (6-4) photoproducts were repaired within 24 h after irradiation, cyclobutane pyrimidine dimers accumulated over the course of the experiment. These studies demonstrate that, even at a suberythemal dose, repeated exposure to UVB causes significant functional and molecular damage to keratinocytes, which might eventually predispose to skin cancer.  相似文献   

18.
Interleukin 1 (IL-1), present in high amounts in normal human skin without any sign of inflammation, suggests a complex mechanism by which its bioactivity is regulated. The specific receptor antagonist of IL-1 (IL-1ra) was analyzed in human skin, sweat and cultured keratinocytes. Extracts of both skin and cultured keratinocytes blocked the binding of [125I]IL-1 to its receptor whereas sweat did not. The inhibitory activity was cell-associated, was not secreted by cultured keratinocytes, and IL-1ra mRNA was identified in these cells. There was an inverse relationship between the level of IL-1ra and that of IL-1 alpha and beta since extracts of differentiating keratinocytes (DK) and higher IL-1ra levels and expressed more mRNA for IL-1ra than non-differentiated keratinocytes (NDK), whereas NDK contained 4 times more IL-1 alpha and beta proteins than DK. This association of cell differentiation with a shift in agonist/antagonist ratio might be related to important autocrine or paracrine functions of IL-1 in normal and inflamed human skin.  相似文献   

19.
As a sister group to Bilateria, Cnidaria is important for understanding early nervous system evolution. Here we examine neural development in the anthozoan cnidarian Nematostella vectensis in order to better understand whether similar developmental mechanisms are utilized to establish the strikingly different overall organization of bilaterian and cnidarian nervous systems. We generated a neuron-specific transgenic NvElav1 reporter line of N. vectensis and used it in combination with immunohistochemistry against neuropeptides, in situ hybridization and confocal microscopy to analyze nervous system formation in this cnidarian model organism in detail. We show that the development of neurons commences in the ectoderm during gastrulation and involves interkinetic nuclear migration. Transplantation experiments reveal that sensory and ganglion cells are autonomously generated by the ectoderm. In contrast to bilaterians, neurons are also generated throughout the endoderm during planula stages. Morpholino-mediated gene knockdown shows that the development of a subset of ectodermal neurons requires NvElav1, the ortholog to bilaterian neural elav1 genes. The orientation of ectodermal neurites changes during planula development from longitudinal (in early-born neurons) to transverse (in late-born neurons), whereas endodermal neurites can grow in both orientations at any stage. Our findings imply that elav1-dependent ectodermal neurogenesis evolved prior to the divergence of Cnidaria and Bilateria. Moreover, they suggest that, in contrast to bilaterians, almost the entire ectoderm and endoderm of the body column of Nematostella planulae have neurogenic potential and that the establishment of connectivity in its seemingly simple nervous system involves multiple neurite guidance systems.  相似文献   

20.
Intrabodies (IB) are suitable tools to down-regulate the expression of cell surface molecules in general. In this work, the appearance of major histocompatibility (MHC) class I molecules on the cell surface could be prevented by the expression of intracellularly localized anti-MHC class I antibodies. The expression of MHC antigens presenting intracellularly synthetised peptides on the cell surface is the predominant reason for immunologic detection and rejection of allogeneic cell and tissue transplants. Allogeneic keratinocyte sheets might be a suitable tool for skin grafting. Within this study primary rat keratinocytes have been transfected with anti-MHC I-IB. Strong IB-expressing cells showed a MHC I "knockout" phenotype. The cells did not exhibit any significant alterations compared to non-transfected cells: the cell growth and the expression of other surface molecules were unaltered. Merely an enhanced intracellular accumulation of MHC I molecules could be detected. Notably, IB-expressing keratinocytes displayed a reduced susceptibility to allogeneic cytotoxic T cells in vitro compared to unmodified cells with a normal level of MHC I surface expression. These MHC I-deficient keratinocytes might be utilized in tissue-engineered allogeneic non-immunogeneic skin transplants. The principle of MHC class I manipulation in general can be used for other allogeneic cell and tissue-engineered transplants as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号