首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 137 毫秒
1.
小RNA病毒蛋白翻译调控元件研究进展   总被引:3,自引:0,他引:3  
真核生物的起始复合物并不是在起始AUG处形成 ,而是在mRNA的 5′末端形成 ,其识别信号就是 5′末端的帽子结构。小RNA病毒科成员RNA 5′末端没有帽子结构 ,而有一个病毒编码的小蛋白质与基因组共价相连。小RNA病毒的蛋白翻译起始于 5′非翻译区中的内部顺式调控元件 ,称为内部核糖体进入位点 (IRES)。口蹄疫病毒 (foot and mouthdiseasevirus,FMDV)是该科病毒的典型代表 ,引起偶蹄动物的急性接触性传染病。完整FMDV含有单链正股RNA、衣壳蛋白及少量装配过程中夹带的非结构蛋白和宿主细胞肌动蛋白 ,其基因组RNA全长约 8 5kb ,可直接作为信使RNA。对IRES的一、二级结构进行了比较 ,对IRES与翻译起始因子的相互作用以及对病毒毒力的影响作了综述。  相似文献   

2.
金由辛 《生命的化学》2000,20(4):145-146
Sasaki等在ProcNatlAcadSciUSA 2 0 0 0年第 4期上报道了一种不依赖甲硫氨酸的翻译起始方式[1] 。PSIV (Plautiastaliintestinevirus)是一种昆虫RNA病毒 ,属蟋蟀麻痹样病毒组 (Cricketparalysis likeviruses) ,为正链RNA病毒。属于该组的还有DCV、RhPV、HiPV等。该组病毒的理化性质与哺乳动物的小RNA病毒 (picornavirus)相似 ,但基因图 1  (A)PSIV基因组结构 ;(B)预测的外壳蛋白编码区上游的茎环结构组织不同。…  相似文献   

3.
真核生物mRNA的翻译调控,通常发生在起始阶段。异源三聚体复合物eIF4F中的eIF4E与mRNA5'端帽子结构的结合是该阶段的核心,而eIF4E抑制性蛋白正是通过与eIF4E的相互作用而调控着翻译起始过程,进而调控着翻译的速率。eIF4E抑制性蛋白对翻译的这种调控作用对细胞的生长、发育、癌症以及神经生物学方面有巨大影响,现主要就eIF4E抑制性蛋白的翻译调控机制进行综述。  相似文献   

4.
郭可盈  周杰 《生命科学》2024,(3):291-301
生物体内翻译起始机制分为两类:帽依赖性翻译起始和内部核糖体进入位点(internal ribosome entry sites, IRES)介导的翻译起始。真核生物的翻译起始为经典的帽依赖性翻译起始模型,而大多数正链RNA病毒选择依赖于IRES的翻译机制。真核翻译起始因子4A (eukaryotic initiation factor 4A, eIF4A)是DEAD-box RNA解旋酶家族的成员,具有依赖于RNA的ATP酶活性和RNA解旋酶活性,而e IF4A具体的解旋机制至今仍不清晰。同时,eIF4A与其他翻译因子有着复杂而紧密的联系,在帽依赖性与IRES介导的翻译起始过程中扮演着至关重要的角色。本文主要对eIF4A的功能、结构以及eIF4A在帽依赖性与IRES介导的翻译起始过程中的机制作一综述。  相似文献   

5.
丙型肝炎病毒(HCV)RNA5′-非编码区(5′-NTR)由341个核苷酸组成,形成4个茎-环二级结构,5′-NTR二级结构及某些部分单链序列的核苷酸组成是病毒翻译起始的先决条件.5′-NTR中的大部分核苷酸序列组成内部核糖体进入位点(IRES),在宿主细胞蛋白质因子La自身抗原、eIF3、多聚嘧啶区结构蛋白(PTB)、多聚胞嘧啶结合蛋白(PCBP-1、2)等的作用下,形成复杂的翻译起始复合物,对HCV的翻译过程进行精确调控,完成帽状结构形成非依赖性的蛋白翻译过程.HCV RNA 5′-NTR翻译过程的分子生物学机制的研究,将有助于HCV治疗新方法和新途径的探索.  相似文献   

6.
丙型肝炎病毒(HCV)RNA5′-非编码区(5′-NTR)由341个核苷酸组成,形成4个茎-环二级结构,5′-NTR二级结构及某些部分单链序列的核苷酸组成是病毒翻译起始的先决条件.5′-NTR中的大部分核苷酸序列组成内部核糖体进入位点(IRES),在宿主细胞蛋白质因子La自身抗原、eIF3、多聚嘧啶区结构蛋白(PTB)、多聚胞嘧啶结合蛋白(PCBP-1、2)等的作用下,形成复杂的翻译起始复合物,对HCV的翻译过程进行精确调控,完成帽状结构形成非依赖性的蛋白翻译过程.HCV RNA 5′-NTR翻译过程的分子生物学机制的研究,将有助于HCV治疗新方法和新途径的探索.  相似文献   

7.
植物真核翻译起始因子4E(eIF4E)在蛋白质合成的起始中发挥重要作用,参与植物-病毒互作,影响病毒的侵染过程.为了研究eIF4E在植物病毒侵染中的功能,建立了一种快速的套叠PCR新方法,成功构建了番木瓜eIF4E和eIFiso4E基因的hpRNA结构,并将其连接到改造的植物表达载体pBI121上,为利用RNA干扰技术研究番木瓜eIF4E和eIFiso4E基因在病毒侵染中的作用奠定了基础.  相似文献   

8.
RNA病毒翻译调控元件—内部核糖体进入位点(IRES)   总被引:1,自引:0,他引:1  
真核生物大多数蛋白质合成采用了依赖帽子结构的翻译起始方式.但一组缺乏帽子构的RNA病毒的蛋白质合成起始是依赖其5′端非翻译区(untranslated region,UTR)翻译调控的顺式作用元件——内部核糖体进入位点(internal ribosome entry site, IRES).它 们能够在一些反式作用因子的辅助下,招募核糖体小亚基到病毒mRNA的翻译起始位点.前,依赖IRES元件翻译起始的RNA病毒在哺乳动物,无脊椎动物及植物中均有发现.因此,对RNA病毒IRES元件的深入研究,不仅有助于阐明相关疾病的发生机理,而且为工业应用和疾病治疗提供借鉴意义.本文对RNA病毒IRES元件发现、分类、结构与功能等作了综述.  相似文献   

9.
【目的】本研究旨在揭示豌豆蚜Acyrthosiphon pisum体内过氧化物氧化还原酶2(ApPrx2)在豌豆蚜应对细菌感染中的作用。【方法】克隆并在大肠杆菌Escherichia coli中异源表达ApPrx2的开放阅读框;对重组蛋白的抗氧化活性进行鉴定;测定绿脓杆菌Pseudomonas aeruginosa和金黄色葡萄球菌Staphylococcus aureus感染豌豆蚜后豌豆蚜体内H_2O_2浓度和ApPrx2的转录水平;通过RNA干扰降低ApPrx2的表达;降低ApPrx2的表达后检测豌豆蚜体内H_2O_2浓度、细菌数目和豌豆蚜的存活率。【结果】序列比对结果表明,ApPrx2与其他物种2-Cys Prxs具有较高的相似性。重组表达的ApPrx2蛋白能够有效降解H_2O_2,表达ApPrx2蛋白的大肠杆菌E.coli对H_2O_2的抗性更高。绿脓杆菌P.aeruginosa和金黄色葡萄球菌S.aureus感染引起豌豆蚜体内H_2O_2水平及ApPrx2转录水平的升高。通过RNA干扰降低ApPrx2表达之后,金黄色葡萄球菌感染的蚜虫体内的H_2O_2水平显著上升,其体内的细菌数显著低于对照,蚜虫的存活率显著降低。【结论】ApPrx2作为抗氧化蛋白能够帮助豌豆蚜抵御因细菌特别是金黄色葡萄球菌感染引起的氧化胁迫。  相似文献   

10.
《生命科学研究》2016,(1):50-56
番木瓜环斑病毒(Papaya ringspot virus,PRSV)严重威胁番木瓜种植业的发展,且目前没有十分有效的防治办法。病毒侵染植物依赖寄主因子的协助,真核翻译起始因子4E(eukaryotic initiation factor 4E,eIF4E)是多种RNA病毒侵染植物的必需因子。以番木瓜eIF4E家族基因为研究对象,构建同时干扰其eIF4E和eIFiso4E基因的发卡RNA(hairpin RNA,hpRNA)载体,并将其导入到番木瓜叶肉原生质中。通过荧光实时定量检测发现,番木瓜中eIF4E和eIFiso4E基因的表达量分别下降了49.8%和67.6%,这为进一步研究番木瓜eIF4E家族基因对PRSV侵染的影响以及利用RNA干扰技术靶向植物基因的病毒防治新策略提供理论和实践依据。  相似文献   

11.
Computer-assisted analysis of the amino acid sequence of the product encoded by the sequenced 3' portion of the cricket paralysis virus (CrPV), an insect picornavirus, genome showed that this protein is homologous not to the RNA-directed RNA polymerases, as originally suggested, but to the capsid proteins of mammalian picornaviruses. Alignment of the CrPV protein sequence with those of picornavirus and calicivirus capsid proteins demonstrated that the sequenced portion of the insect picornavirus genome encodes the C-terminal part of VP3 and the entire VP1. Thus CrPV seems to have a genome organization distinct from that of other picornaviruses but closely resembling that of caliciviruses, with the capsid proteins encoded in the 3' part of the genome. On the other hand, the tentative phylogenetic trees generated from the VP3 alignment revealed grouping of CrPV with hepatitis A virus, a true picornavirus, not with caliciviruses. Thus CrPV may be a picornavirus with a calicivirus-like genome organization. Different options for CrPV genome expression are discussed.  相似文献   

12.
The cricket paralysis virus (CrPV) intergenic region (IGR) internal ribosome entry site (IRES) uses an unusual mechanism of initiating translation, whereby the IRES occupies the P-site of the ribosome and the initiating tRNA enters the A-site. In vitro experiments have demonstrated that the CrPV IGR IRES is able to bind purified ribosomes and form 80S complexes capable of synthesizing small peptides in the absence of any translation initiation factors. These results suggest that initiation by this IRES is factor-independent. To determine whether the IGR IRES functions in the absence of initiation factors in vivo, we assayed IGR IRES activity in various yeast strains harboring mutations in canonical translation initiation factors. We used a dicistronic reporter assay in yeast to determine whether the CrPV IGR IRES is able to promote translation sufficient to support growth in the presence of various deletions or mutations in translation initiation factors. Using this assay, we have previously shown that the CrPV IGR IRES functions efficiently in yeast when ternary complexes (eIF2•GTP•initiator tRNAmet) are reduced. Here, we demonstrate that the CrPV IGR IRES activity does not require the eukaryotic initiation factors eIF4G1 or eIF5B, and it is enhanced when eIF2B, the eIF3b subunit of eIF3, or eIF4E are impaired. Taken together, these data support a model in which the CrPV IGR IRES is capable of initiating protein synthesis in the absence of any initiation factors in vivo, and suggests that the CrPV IGR IRES initiates translation by directly recruiting the ribosomal subunits in vivo.  相似文献   

13.
Certain viral and cellular mRNAs initiate translation cap-independently at internal ribosome entry site (IRES) elements. Picornavirus IRES elements are widely used in dicistronic or multicistronic vectors in gene therapy, virus replicon systems, and analysis of IRES function. In such vectors, expression of the upstream gene often serves as internal control to standardize the readings of IRES-driven downstream reporter activity. Picornaviral IRES elements translate optimally at up to 120 mM K(+) concentration, whereas genes used as upstream reporters usually have lower salt optima when present in monocistronic mRNAs. However, here we show that such reporter genes are efficiently translated at higher K(+) concentrations when placed upstream of a functional picornavirus IRES. This translation enhancement occurs in cis, is independent of the nature of the first reporter and of second reporter translation, and is conferred by the IRESs of picornaviruses but not of hepatitis C virus. A defective picornavirus IRES with a deletion killing IRES activity but leaving the binding site for initiation factor eIF4G intact retains translation enhancement activity. Translation enhancement on a capped mRNA is disabled by m(7)GDP. In addition, the C-terminal fragment of eIF4G can confer translation enhancement also on uncapped mRNA. We conclude that whenever eIF4F has been captured to a dicistronic mRNA by binding to a picornavirus IRES via its eIF4G moiety, it can be provided in cis to the 5'-end of the RNA and there stimulate translation initiation, either by binding to the cap nucleotide using its eIF4E moiety or by binding to the RNA cap-independently using its eIF4G moiety.  相似文献   

14.
Previous work by several laboratories has established that translation of picornavirus RNA requires active eIF2α for translation in cell free systems or after transfection in culture cells. Strikingly, we have found that encephalomyocarditis virus protein synthesis at late infection times is resistant to inhibitors that induce the phosphorylation of eIF2α whereas translation of encephalomyocarditis virus early during infection is blocked upon inactivation of eIF2α by phosphorylation induced by arsenite. The presence of this compound during the first hour of infection leads to a delay in the appearance of late protein synthesis in encephalomyocarditis virus-infected cells. Depletion of eIF2α also provokes a delay in the kinetics of encephalomyocarditis virus protein synthesis, whereas at late times the levels of viral translation are similar in control or eIF2α-depleted HeLa cells. Immunofluorescence analysis reveals that eIF2α, contrary to eIF4GI, does not colocalize with ribosomes or with encephalomyocarditis virus 3D polymerase. Taken together, these findings support the novel idea that eIF2 is not involved in the translation of encephalomyocarditis virus RNA during late infection. Moreover, other picornaviruses such as foot-and-mouth disease virus, mengovirus and poliovirus do not require active eIF2α when maximal viral translation is taking place. Therefore, translation of picornavirus RNA may exhibit a dual mechanism as regards the participation of eIF2. This factor would be necessary to translate the input genomic RNA, but after viral RNA replication, the mechanism of viral RNA translation switches to one independent of eIF2.  相似文献   

15.
Efficient translation of most eukaryotic mRNAs results from synergistic cooperation between the 5' m(7)GpppN cap and the 3' poly(A) tail. In contrast to such mRNAs, the polyadenylated genomic RNAs of picornaviruses are not capped, and translation is initiated internally, driven by an extensive sequence termed IRES (for internal ribosome entry segment). Here we have used our recently described poly(A)-dependent rabbit reticulocyte lysate cell-free translation system to study the role of mRNA polyadenylation in IRES-driven translation. Polyadenylation significantly stimulated translation driven by representatives of each of the three types of picornaviral IRES (poliovirus, encephalomyocarditis virus, and hepatitis A virus, respectively). This did not result from a poly(A)-dependent alteration of mRNA stability in our in vitro translation system but was very sensitive to salt concentration. Disruption of the eukaryotic initiation factor 4G-poly(A) binding protein (eIF4G-PABP) interaction or cleavage of eIF4G abolished or severely reduced poly(A) tail-mediated stimulation of picornavirus IRES-driven translation. In contrast, translation driven by the flaviviral hepatitis C virus (HCV) IRES was not stimulated by polyadenylation but rather by the authentic viral RNA 3' end: the highly structured X region. X region-mediated stimulation of HCV IRES activity was not affected by disruption of the eIF4G-PABP interaction. These data demonstrate that the protein-protein interactions required for synergistic cooperativity on capped and polyadenylated cellular mRNAs mediate 3'-end stimulation of picornaviral IRES activity but not HCV IRES activity. Their implications for the picornavirus infectious cycle and for the increasing number of identified cellular IRES-carrying mRNAs are discussed.  相似文献   

16.
Alphavirus replicons are very useful for analyzing different aspects of viral molecular biology. They are also useful tools in the development of new vaccines and highly efficient expression of heterologous genes. We have investigated the translatability of Sindbis virus (SV) subgenomic mRNA bearing different 5′-untranslated regions, including several viral internal ribosome entry sites (IRESs) from picornaviruses, hepatitis C virus, and cricket paralysis virus. Our findings indicate that all these IRES-containing mRNAs are initially translated in culture cells transfected with the corresponding SV replicon but their translation is inhibited in the late phase of SV replication. Notably, co-expression of different poliovirus (PV) non-structural genes reveals that the protease 2A (2Apro) is able to increase translation of subgenomic mRNAs containing the PV or encephalomyocarditis virus IRESs but not of those of hepatitis C virus or cricket paralysis virus. A PV 2Apro variant deficient in eukaryotic initiation factor (eIF) 4GI cleavage or PV protease 3C, neither of which cleaves eIF4GI, does not increase picornavirus IRES-driven translation, whereas L protease from foot-and-mouth disease virus also rescues translation. These findings suggest that the replicative foci of SV-infected cells where translation takes place are deficient in components necessary to translate IRES-containing mRNAs. In the case of picornavirus IRESs, cleavage of eIF4GI accomplished by PV 2Apro or foot-and-mouth disease virus protease L rescues this inhibition. eIF4GI co-localizes with ribosomes both in cells electroporated with SV replicons bearing the picornavirus IRES and in cells co-electroporated with replicons that express PV 2Apro. These findings support the idea that eIF4GI cleavage is necessary to rescue the translation driven by picornavirus IRESs in baby hamster kidney cells that express SV replicons.  相似文献   

17.
Certain picornaviruses encode proteinases which cleave the translation initiation factor eIF4G, a member of the eIF4F complex which recruits mRNA to the 40S ribosomal subunit during initiation of protein synthesis in eukaryotes. We have compared the efficiency of eIF4G cleavage in rabbit reticulocyte lysates during translation of mRNAs encoding the foot-and-mouth disease virus leader proteinase (Lpro) or the human rhinovirus 2Apro. Under standard translation conditions, Lpro cleaved 50% of eIF4G within 4 min after initiation of protein synthesis, whereas 2Apro required 15 min. At these times, the molar ratios of proteinase to eIF4G were 1:130 for Lpro and 1:12 for 2Apro, indicating a much more efficient in vitro cleavage than previously observed. The molar ratios are similar to those observed during viral infection in vivo.  相似文献   

18.
The cricket paralysis virus intergenic region internal ribosomal entry site (CrPV IGR IRES) can assemble translation initiation complexes by binding to 40S subunits without Met-tRNA(Met)(i) and initiation factors (eIFs) and then by joining directly with 60S subunits, yielding elongation-competent 80S ribosomes. Here, we report that eIF1, eIF1A and eIF3 do not significantly influence IRES/40S subunit binding but strongly inhibit subunit joining and the first elongation cycle. The IRES can avoid their inhibitory effect by its ability to bind directly to 80S ribosomes. The IRES's ability to bind to 40S subunits simultaneously with eIF1 allowed us to use directed hydroxyl radical cleavage to map its position relative to the known position of eIF1. A connecting loop in the IRES's pseudoknot (PK) III domain, part of PK II and the entire domain containing PK I are solvent-exposed and occupy the E site and regions of the P site that are usually occupied by Met-tRNA(Met)(i).  相似文献   

19.
Initiation of protein synthesis on picornavirus RNA requires an internal ribosome entry site (IRES). Typically, picornavirus IRES elements contain about 450 nucleotides (nt) and use most of the cellular translation initiation factors. However, it is now shown that just 280 nt of the porcine teschovirus type 1 Talfan (PTV-1) 5' untranslated region direct the efficient internal initiation of translation in vitro and within cells. In toeprinting assays, assembly of 48S preinitiation complexes from purified components on the PTV-1 IRES was achieved with just 40S ribosomal subunits plus eIF2 and Met-tRNA(i)(Met). Indeed, a binary complex between 40S subunits and the PTV-1 IRES is formed. Thus, the PTV-1 IRES has properties that are entirely different from other picornavirus IRES elements but highly reminiscent of the hepatitis C virus (HCV) IRES. Comparison between the PTV-1 IRES and HCV IRES elements revealed islands of high sequence identity that occur in regions critical for the interactions of the HCV IRES with the 40S ribosomal subunit and eIF3. Thus, there is significant functional and structural similarity between the IRES elements from the picornavirus PTV-1 and HCV, a flavivirus.  相似文献   

20.
The question of whether translation initiation factor eIF4E and the complete eIF4G polypeptide are required for initiation dependent on the IRES (internal ribosome entry site) of hepatitis A virus (HAV) has been examined using in vitro translation in standard and eIF4G-depleted rabbit reticulocyte lysates. In agreement with previous publications, the HAV IRES is unique among all picornavirus IRESs in that it was inhibited if translation initiation factor eIF4G was cleaved by foot-and-mouth disease L-proteases. In addition, the HAV IRES was inhibited by addition of eIF4E-binding protein 1, which binds tightly to eIF4E and sequesters it, thus preventing its association with eIF4G. The HAV IRES was also inhibited by addition of m(7)GpppG cap analogue, irrespective of whether the RNA tested was capped or not. Thus, initiation on the HAV IRES requires that eIF4E be associated with eIF4G and that the cap-binding pocket of eIF4E be empty and unoccupied. This suggests two alternative models: (i) initiation requires a direct interaction between an internal site in the IRES and eIF4E/4G, an interaction which involves the cap-binding pocket of eIF4E in addition to any direct eIF4G-RNA interactions; or (ii) it requires eIF4G in a particular conformation which can be attained only if eIF4E is bound to it, with the cap-binding pocket of the eIF4E unoccupied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号