首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Le Guével R  Pakdel F 《BioTechniques》2001,30(5):1000-1004
Here, we describe a rapid, convenient, and quantitative beta-galactosidase assay in liquid culture of recombinant yeast that expresses the estrogen receptor. This assay allows large-scale screening of chemicals (more than 600 samples/day) for the evaluation of their direct estrogenic potency and accurate determination of their EC50 with minimal manipulations. The assay, which is based on digestion of the yeast cell wall by lyticase (zymolase), a beta-glucanase isolated from Arthrobacter luteus, followed by a hypoosmotic shock lysis, is performed completely in 96-well plates. This protocol for using recombinant yeast with the two-hybrid technology significantly advances recombinant yeast manipulation.  相似文献   

2.
Although three major classes of systemic antifungal agents are clinically available, each is characterized by important limitations. Thus, there has been considerable ongoing effort to develop novel and repurposed agents for the therapy of invasive fungal infections. In an effort to address these needs, we developed a novel high-throughput, multiplexed screening method that utilizes small molecules to probe candidate drug targets in the opportunistic fungal pathogen Candida albicans. This method is amenable to high-throughput automated screening and is based upon detection of changes in GFP levels of individually tagged target proteins. We first selected four GFP-tagged membrane-bound proteins associated with virulence or antifungal drug resistance in C. albicans. We demonstrated proof-of-principle that modulation of fluorescence intensity can be used to assay the expression of specific GFP-tagged target proteins to inhibitors (and inducers), and this change is measurable within the HyperCyt automated flow cytometry sampling system. Next, we generated a multiplex of differentially color-coded C. albicans strains bearing C-terminal GFP-tags of each gene encoding candidate drug targets incubated in the presence of small molecules from the Prestwick Chemical Library in 384-well microtiter plate format. Following incubation, cells were sampled through the HyperCyt system and modulation of protein levels, as indicated by changes in GFP-levels of each strain, was used to identify compounds of interest. The hit rate for both inducers and inhibitors identified in the primary screen did not exceed 1% of the total number of compounds in the small-molecule library that was probed, as would be expected from a robust target-specific, high-throughput screening campaign. Secondary assays for virulence characteristics based on null mutant strains were then used to further validate specificity. In all, this study presents a method for the identification and verification of new antifungal drugs targeted to fungal virulence proteins using C. albicans as a model fungal pathogen.  相似文献   

3.
G-protein-coupled receptors (GPCRs) are pivotal in cellular responses to the environment and are common drug targets. Identification of selective small molecules acting on single GPCRs is complicated by the shared machinery coupling signal transduction to physiology. Here, we demonstrate a high-content screen using a panel of GPCR assays to identify receptor selective molecules acting within the kinase/phosphatase inhibitor family. A collection of 88 kinase and phosphatase inhibitors was screened against seven agonist-induced GPCR internalization cell models as well as transferrin uptake in human embryonic kidney cells. Molecules acting on a single receptor were identified through excluding pan-specific compounds affecting housekeeping endocytosis or disrupting internalization of multiple receptors. We identified compounds acting on a sole GPCR from activities in a broad range of chemical structures that could not be easily sorted by conventional means. Selective analysis can therefore rapidly select compounds selectively affecting GPCR activity with specificity to one receptor class through high-content screening.  相似文献   

4.
Microtubules are critical for a variety of cellular processes such as chromosome segregation, intracellular transport and cell shape. Drugs against microtubules have been widely used in cancer chemotherapies, though the acquisition of drug resistance has been a significant issue for their use. To identify novel small molecules that inhibit microtubule organization, we conducted sequential phenotypic screening of fission yeast and human cells. From a library of diverse 10 371 chemicals, we identified 11 compounds that inhibit proper mitotic progression both in fission yeast and in HeLa cells. An in vitro assay revealed that five of these compounds are strong inhibitors of tubulin polymerization. These compounds directly bind tubulin and destabilize the structures of tubulin dimers. We showed that one of the compounds, L1, binds to the colchicine-binding site of microtubules and exhibits a preferential potency against a panel of human breast cancer cell lines compared with a control non-cancer cell line. In addition, L1 overcomes cellular drug resistance mediated by βIII tubulin overexpression and has a strong synergistic effect when combined with the Plk1 inhibitor BI2536. Thus, we have established an economically effective drug screening strategy to target mitosis and microtubules, and have identified a candidate compound for cancer chemotherapy.  相似文献   

5.
The protein kinase CDK5 (cyclin-dependent kinase 5) is activated through its association with a cyclin-like protein p35 or p39. In pathological conditions (such as Alzheimer's disease and various other neuropathies), truncation of p35 leads to the appearance of the p25 protein. The interaction of p25 with CDK5 up-regulates the kinase activity and modifies the substrate specificity. ATP-mimetic inhibitors of CDK5 have already been developed. However, the lack of selectivity of such inhibitors is often a matter of concern. An alternative approach can be used to identify highly specific inhibitors that disrupt protein interactions involving protein kinases. We have developed a bioluminescence resonance energy transfer (BRET)-based screening assay in yeast to discover protein-protein interaction inhibitors (P2I2). Here, we present the first use of BRET in yeast for the screening of small molecule libraries. This screening campaign led to the discovery of one molecule that prevents the interaction between CDK5 and p25, thus inhibiting the protein kinase activity. This molecule may give rise to high-specificity drug candidates.  相似文献   

6.
Fungal pathogens exploit diverse mechanisms to survive exposure to antifungal drugs. This poses concern given the limited number of clinically useful antifungals and the growing population of immunocompromised individuals vulnerable to life-threatening fungal infection. To identify molecules that abrogate resistance to the most widely deployed class of antifungals, the azoles, we conducted a screen of 1,280 pharmacologically active compounds. Three out of seven hits that abolished azole resistance of a resistant mutant of the model yeast Saccharomyces cerevisiae and a clinical isolate of the leading human fungal pathogen Candida albicans were inhibitors of protein kinase C (PKC), which regulates cell wall integrity during growth, morphogenesis, and response to cell wall stress. Pharmacological or genetic impairment of Pkc1 conferred hypersensitivity to multiple drugs that target synthesis of the key cell membrane sterol ergosterol, including azoles, allylamines, and morpholines. Pkc1 enabled survival of cell membrane stress at least in part via the mitogen activated protein kinase (MAPK) cascade in both species, though through distinct downstream effectors. Strikingly, inhibition of Pkc1 phenocopied inhibition of the molecular chaperone Hsp90 or its client protein calcineurin. PKC signaling was required for calcineurin activation in response to drug exposure in S. cerevisiae. In contrast, Pkc1 and calcineurin independently regulate drug resistance via a common target in C. albicans. We identified an additional level of regulatory control in the C. albicans circuitry linking PKC signaling, Hsp90, and calcineurin as genetic reduction of Hsp90 led to depletion of the terminal MAPK, Mkc1. Deletion of C. albicans PKC1 rendered fungistatic ergosterol biosynthesis inhibitors fungicidal and attenuated virulence in a murine model of systemic candidiasis. This work establishes a new role for PKC signaling in drug resistance, novel circuitry through which Hsp90 regulates drug resistance, and that targeting stress response signaling provides a promising strategy for treating life-threatening fungal infections.  相似文献   

7.
Pneumocystis pneumonia remains the most common AIDS-defining opportunistic infection in people with HIV. The process by which Pneumocystis carinii constructs its cell wall is not well known, although recent studies reveal that molecules such as beta-1-3-glucan synthetase (GSC1) and environmental pH-responsive genes such as PHR1 are important for cell-wall integrity. In closely related fungi, a specific mitogen-activated protein kinase (MAPK) cascade regulates cell-wall assembly in response to elevated temperature. The upstream mitogen-activated protein kinase kinase kinase (MAPKKK, or MEKK), BCK1, is an essential component in this pathway for maintaining cell-wall integrity and preventing fungal cell lysis. We have identified a P. carinii MEKK gene and have expressed it in Saccharomyces cerevisiae to gain insights into its function. The P. carinii MEKK, PCBCK1, corrects the temperature-sensitive cell lysis defect of bck1Delta yeast. Further, at elevated temperature PCBCK1 restored the signaling defect in bck1Delta yeast to maintain expression of the temperature-inducible beta-1-3-glucan synthetase gene, FKS2. PCBCK1, as a functional kinase, is capable of autophosphorylation and substrate phosphorylation. Since glucan machinery is not present in mammals, a better understanding of this pathway in P. carinii might aid in the development of novel medications which interfere with the integrity of the Pneumocystis cell wall.  相似文献   

8.
The fluorometric microculture cytotoxicity assay (FMCA) is a nonclonogenic microplate-based cell viability assay used for measurement of the cytotoxic and/or cytostatic effect of different compounds in vitro. The assay is based on hydrolysis of the probe, fluorescein diacetate (FDA) by esterases in cells with intact plasma membranes. The assay is available as both a semiautomated 96-well plate setup and a 384-well plate version fully adaptable to robotics. Experimental plates are prepared with a small amount of drug solution and can be stored frozen. Cells are seeded on the plates and cell viability is evaluated after 72 h. The protocol described here is applicable both for cell lines and freshly prepared tumor cells from patients and is suitable both for screening in drug development and as a basis for a predictive test for individualization of anticancer drug therapy.  相似文献   

9.
Fungal cell wall assembly is a complicated process involving multiple enzymes and coordinated signaling pathways. The cell wall integrity MAPK pathway acts to stabilize the fungal cell wall during conditions of elevated temperature by regulation of glucan synthesis. The upstream kinase, BCK1, is a critical component of this pathway. Pneumonia is a significant cause of death from the fungal opportunistic pathogen Pneumocystis in immunocompromised states, especially with HIV infection. We have previously shown that PCBCK1 functions in the cell wall integrity pathway in yeast as a functional protein kinase. Kinases have specific requirements for enzymatic function which have not been investigated in fungi. Here we examine the biochemical requirements for PCBCK1 kinase activity expressed in Saccharomyces cerevisiae bck1Delta yeast. PCBCK1 requires 10 mM MgCl(2), pH 6, temperature 30 degrees C, and 10 microM ATP for kinase activity. Interference of the Pneumocystis cell wall integrity pathway is an attractive target for drug development since glucan synthesis machinery is not present in humans.  相似文献   

10.
The search for new antimicrobial compounds and the optimization of production methods turn the use of antimicrobial susceptibility tests a routine. The most frequently used methods are based on agar diffusion assays or on dilution in agar or broth. For filamentous fungi, the most common antimicrobial activity detection methods comprise the co-culture of two filamentous fungal strains or the use of fungal extracts to test against single-cell microorganisms. Here we report a rapid, effective and reproducible assay to detect fungal antimicrobial activity against single-cell microorganisms. This method allows an easy way of performing a fast antimicrobial screening of actively growing fungi directly against yeast. Because it makes use of an actively growing mycelium, this bioassay also provides a way for studying the production dynamics of antimicrobial compounds by filamentous fungi. The proposed assay is less time consuming and introduces the innovation of allowing the direct detection of fungal antimicrobial properties against single cell microorganisms without the prior isolation of the active substance(s). This is particularly useful when performing large screenings for fungal antimicrobial activity. With this bioassay, antimicrobial activity of Hypholoma fasciculare against yeast species was observed for the first time.  相似文献   

11.
The majority of small molecule drugs act on protein targets to exert a therapeutic function. It has become apparent in recent years that many small molecule drugs act on more than one particular target and consequently, approaches which profile drugs to uncover their target binding spectrum have become increasingly important. Classical yeast two-hybrid systems have mainly been used to discover and characterize protein-protein interactions, but recent modifications and improvements have opened up new routes towards screening for small molecule-protein interactions. Such yeast "n"-hybrid systems hold great promise for the development of drugs which interfere with protein-protein interactions and for the discovery of drug-target interactions. In this review, we discuss several yeast two-hybrid based approaches with applications in drug discovery and describe a protocol for yeast three-hybrid screening of small molecules to identify their direct targets.  相似文献   

12.
The virulent spore-forming bacterium Bacillus anthracis secretes anthrax toxin composed of protective antigen (PA), lethal factor (LF) and edema factor (EF). LF is a Zn-dependent metalloprotease that inactivates key signaling molecules, such as mitogen-activated protein kinase kinases (MAPKK), to ultimately cause cell death. We report here the identification of small molecule (nonpeptidic) inhibitors of LF. Using a two-stage screening assay, we determined the LF inhibitory properties of 19 compounds. Here, we describe six inhibitors on the basis of a pharmacophoric relationship determined using X-ray crystallographic data, molecular docking studies and three-dimensional (3D) database mining from the US National Cancer Institute (NCI) chemical repository. Three of these compounds have K(i) values in the 0.5-5 microM range and show competitive inhibition. These molecular scaffolds may be used to develop therapeutically viable inhibitors of LF.  相似文献   

13.
Small molecule inhibitors of proteins are invaluable tools in research and as starting points for drug development. However, their screening can be tedious, as most screening methods have to be tailored to the corresponding drug target. Here, we describe a detailed protocol for a modular and generally applicable assay for the identification of small organic compounds that displace an aptamer complexed to its target protein. The method relies on fluorescence-labeled aptamers and the increase of fluorescence polarization upon their binding to the target protein. The assay has high Z'-factors, making it compatible with high-throughput screening. It allows easy automation, making fluorescence readout the time-limiting step. As aptamers can be generated for virtually any protein target, the assay allows identification of small molecule inhibitors for targets or individual protein domains for which no functional screen is available. We provide the step-by-step protocol to screen for antagonists of the cytohesin class of small guanosine exchange factors.  相似文献   

14.
The beta isoform of the heat shock protein 90 (Hsp90beta) is a cellular chaperone required for the maturation of key proteins involved in growth response to extracellular factors as well as oncogenic transformation of various cell types. Compounds that inhibit the function of Hsp90beta are thus believed to have potential as novel anticancer drugs. To date, 2 fungal metabolites are known to inhibit Hsp90beta. However, insolubility and liver toxicity restrict the clinical use of these molecules. The limitation to identify novel and safe Hsp90beta inhibitors is that presently no suitable high-throughput screening assay is available. Here, the authors present the development of a homogenous assay based on 2-dimensional fluorescence intensity distribution analysis of tetramethyl-rhodamine (TAMRA)-labeled radicicol bound to Hsp90beta. Furthermore, the assay has been shown to be compatible with the confocal nanoscreening platform Mark II from Evotec-Technologies and can therefore be used for miniaturized high-throughput screening. The applied detection technology provides critical information about the nature of biomolecular interaction at the thermodynamic equilibrium, such as affinity constants and stoichiometric parameters of the binding. The assay is used to identify small molecular weight compounds displacing TAMRA-radicicol. Such compounds are believed to be important molecules in the discovery of novel anticancer drugs.  相似文献   

15.
16.
Mouse transporter protein (MTP) is a highly conserved polytopic membrane protein present in mammalian lysosomes and endosomes. The role of MTP in regulating the in vivo subcellular distribution of numerous structurally distinct small molecules has been examined in this study by its expression in a drug-sensitive strain of the yeast Saccharomyces cerevisiae. Surprisingly, the expression of MTP in membranes of an intracellular compartment resulted in a cellular resistance or hypersensitivity to a range of drugs that included nucleoside and nucleobase analogs, antibiotics, anthracyclines, ionophores, and steroid hormones. The intracellular bioavailability of steroid hormones was altered by MTP, as determined using an in vivo glucocorticoid receptor-driven reporter assay in yeast, suggesting that the MTP-regulated drug sensitivity arose due to a change in the subcellular compartmentalization of steroid hormones and other drugs. MTP-regulated drug sensitivity in yeast was blocked to varying degrees by compounds that inhibit lysosomal function, interfere with intracellular cholesterol transport, or modulate the multidrug resistance phenotype of mammalian cells. These results indicate that MTP is involved in the subcellular compartmentalization of diverse hydrophobic small molecules and contributes to the inherent drug sensitivity or resistance of the mammalian cell.  相似文献   

17.
A series of novel hybrid molecules 4a-y containing thiazole and benzotriazole templates were designed and synthesized. The structures of the synthesized compounds were elucidated by IR, (1)H NMR, (13)C NMR and mass spectral data. All the synthesized compounds were tested for their antimicrobial activity (zone of inhibition) against Gram-positive, Gram-negative strains of bacteria as well as fungal strains. After that minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs) and minimum fungicidal concentrations (MFCs) of all the synthesized compounds were determined. The investigation of antimicrobial screening data revealed that most of the tested compounds showed moderate to good microbial inhibitions.  相似文献   

18.
Protein tyrosine kinases play critical roles in cell signaling and are considered attractive targets for drug discovery. The authors have applied microARCS (microarrayed compound screening) technology to develop a high-throughput screen for finding inhibitors of the p56lck tyrosine kinase. Initial assay development was performed in a homogeneous time-resolved (LANCE) format in 96-well microplates and then converted into the gel-based microARCS format. The microARCS methodology is a well-less screening format in which 8640 compounds are arrayed on a microplate-sized piece of polystyene and subsequently assayed by placing reagents cast in agarose gels in contact with these compound sheets. A blotting paper soaked with adenosine triphosphate is applied on the gel to initiate the kinase reaction in the gel. Using this screening methodology, 300,000 compounds were screened in less than 40 h. Substantial reagent reduction was achieved by converting this tyrosine kinase assay from a 96-well plate assay to microARCS, resulting in significant cost savings.  相似文献   

19.
Resistance to widely used fungistatic drugs, particularly to the ergosterol biosynthesis inhibitor fluconazole, threatens millions of immunocompromised patients susceptible to invasive fungal infections. The dense network structure of synthetic lethal genetic interactions in yeast suggests that combinatorial network inhibition may afford increased drug efficacy and specificity. We carried out systematic screens with a bioactive library enriched for off‐patent drugs to identify compounds that potentiate fluconazole action in pathogenic Candida and Cryptococcus strains and the model yeast Saccharomyces. Many compounds exhibited species‐ or genus‐specific synergism, and often improved fluconazole from fungistatic to fungicidal activity. Mode of action studies revealed two classes of synergistic compound, which either perturbed membrane permeability or inhibited sphingolipid biosynthesis. Synergistic drug interactions were rationalized by global genetic interaction networks and, notably, higher order drug combinations further potentiated the activity of fluconazole. Synergistic combinations were active against fluconazole‐resistant clinical isolates and an in vivo model of Cryptococcus infection. The systematic repurposing of approved drugs against a spectrum of pathogens thus identifies network vulnerabilities that may be exploited to increase the activity and repertoire of antifungal agents.  相似文献   

20.
A yeast lysis assay in the microtiter plate format improved precision and throughput and led to an improved algorithm for estimating lag time. The assay reproducibly revealed differences of 10% or greater in the maximal lysis rate and 50% or greater in the lag time. Clonal differences were determined to be the major source of variation. Microtiter-based assays should be useful for screening for drug susceptibility and for analyzing mutant phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号