首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The musculature of the fourth to eighth abdominal segments is typically composed of twenty pairs of segmental muscles associated with the body wall. In the first to third and ninth and tenth segments certain modifications to the basic plan occur in association with the abdominal-thoracic junction, the respiratory apparatus and the anal appendages. In some segments there are also paired muscles associated with the alimentary canal. Two large transverse muscles are present in the abdomen. There are eight abdominal ganglia, the first seven of which each give rise to three pairs of lateral nerves, the eighth to five pairs. In addition there are ten median abdominal nerves. The innervation fields of the various nerves are described. The first three pairs of lateral nerves of the last ganglion are homologous with the lateral nerves of the other abdominal ganglia; the fourth pair innervates most of segment nine; and the fifth pair innervates the remainder of segment nine, segment ten and the anal appendages. Certain of the abdominal muscles are innervated by branches from two different nerve roots. In segments six and seven the anterior point of attachment of the longitudinal stretch receptors is normally different from that in the other abdominal segments. This is discussed in the light of the types of movement which involve the abdomen and it seems apparent that these receptors are affected not only by swimming and abdominal flexion, as are the other longitudinal stretch receptors, but also by respiratory movements. Two distinct types of epidermal sensilla are present on the abdomen, spines and hairs. The former are the more numerous on the body, the latter on the anal appendages.  相似文献   

2.
The morphological diversity of locomotor appendages in Arachnida is surveyed lo reconstruct phylogenetic relationships and discover evolutionary trends in form and function. The appendicular skeleton and musculature of representatives from the ten living arachnid orders ate described, and a system of homology is proposed. Character polarities are established through comparison with an outgroup. Limulus polyphemus Xiphosura). Cladistic analysis suggests that Arachnida is monophyletic and that absence of extensor muscles is a primitive condition. Extensors are primitively absent in Araneae. Amblypygi, Uropygi, Palpigradi, Ricinulei and Acari. Most similarities in the appendages of these orders are symplesiomorphic so that phylogenetic relationships among the 'extensorless' groups cannot be resolved solely on the basis of appendicular characters. Extensor muscles appear to have evolved once, and their presence is considered a synapomorphic feature of Opiliones, Scorpiones, Pseudoscorpiones and Solifugae. Solifugae lack extensors, but a parsimonious interpretation of other characters indicates that this is a secondary, derived condition. The phylogenetic relationships among these four orders are clarified by modifications of the patellotibial joint. Cladistic analysis indicates that Opiliones may be the sister group of the other three orders and that Scorpiones is the sister group of Pseudoscorpiones and Solifugae. Conclusions concerning phylogenetic relationships and evolutionary morphology presented here differ substantially from those of earlier studies on the locomotor appendages of Arachnida.  相似文献   

3.
The morphological diversity of locomotor appendages in Arachnida is surveyed lo reconstruct phylogenetic relationships and discover evolutionary trends in form and function. The appendicular skeleton and musculature of representatives from the ten living arachnid orders ate described, and a system of homology is proposed. Character polarities are established through comparison with an outgroup. Limulus polyphemus Xiphosura). Cladistic analysis suggests that Arachnida is monophyletic and that absence of extensor muscles is a primitive condition. Extensors are primitively absent in Araneae. Amblypygi, Uropygi, Palpigradi, Ricinulei and Acari. Most similarities in the appendages of these orders are symplesiomorphic so that phylogenetic relationships among the ‘extensorless’ groups cannot be resolved solely on the basis of appendicular characters. Extensor muscles appear to have evolved once, and their presence is considered a synapomorphic feature of Opiliones, Scorpiones, Pseudoscorpiones and Solifugae. Solifugae lack extensors, but a parsimonious interpretation of other characters indicates that this is a secondary, derived condition. The phylogenetic relationships among these four orders are clarified by modifications of the patellotibial joint. Cladistic analysis indicates that Opiliones may be the sister group of the other three orders and that Scorpiones is the sister group of Pseudoscorpiones and Solifugae. Conclusions concerning phylogenetic relationships and evolutionary morphology presented here differ substantially from those of earlier studies on the locomotor appendages of Arachnida.  相似文献   

4.
A lineage of benthic chaetognaths has developed limb-like appendages on the caudal part of the body, resulting from a local modification of the lateral fins, which are folds of the epidermis and have a role in balance when swimming. The most complex are those of Paraspadella gotoi which are used as props with the tip of the tail, allowing an elaborated mating behaviour comprising different movements: complete erection of the body, swings and jumps, astonishing for so simple-bodied animals. In the tail, the epidermis and the connective tissue, together with the longitudinal musculature, are involved in this innovation. All the components of the fins, i.e. connective tissue, fin rays and multilayered epidermic cells are conserved, but their function has changed. The movements of appendages are adjusted by one pair of small appendicular muscles localised in the body wall, while posture movements of the body are allowed by four longitudinal bundles of raising muscle. These two new muscles have successively appeared in the evolutive series previously described in Paraspadella. They have definitely arisen from the secondary muscle: the two lateral bundles for the former, and the two dorsal and two ventral ones for the latter. All are supercontracting muscles, a muscle kind also observed in the other benthic genus Spadella, but unknown in planktonic and benthoplanktonic chaetognaths.  相似文献   

5.
The muscular anatomy of the millipede Phyllogonostreptus nigrolabiatus (Newport, 1844) (Diplopoda; Spirostreptida; Harpagophoridae) is comprehensively surveyed. The musculature of the first three postcollum pleurotergites, the "thorax," and their associated appendages was found to be more complex than that of the postthoracic rings. It is hypothesized that the musculature of the postthoracic segments is derived relative to that of the thoracic segments, which retain primitively free sternites and are not diplosegments. This hypothesis is discussed relative to previous hypotheses positing that the anteriormost three leg-bearing rings in millipedes are diplosegments. The musculature of spirostreptid gonopods is described in detail for the first time. Comparison of the cephalic musculature is made with previously described musculature in Julida showing that, while many aspects of the musculature are conserved, there exist interordinal differences, documenting the potential utility of comparative anatomical studies for resolving millipede phylogeny.  相似文献   

6.
Species of Hexarthra and Polyarthra are freshwater rotifers with well-known escape behaviors that result from interactions with planktonic predators. Both rotifers bear a suite of mobile appendages that function in evasive maneuvers and saltatory jumps through the water column, but the anatomical and functional bases of these actions are poorly understood. Here, we use a combination of phalloidin staining, confocal laser scanning microscopy, and video analysis to describe the morphology of the somatic muscles that supply the mobile appendages in order to understand how they function in escape behavior. Results show that species of Hexarthra, which bear six radially distributed limbs, possess a highly complex trunk musculature that supplies the inside of each limb with its own abductor and adductor muscles, i.e., a direct muscle supply. The singular dorsal and ventral limbs each receive a pair of large abductor and adductor muscles (four muscles total per limb), while the paired dorsolateral and ventrolateral limbs each receives three muscles (two abductors, one adductor per limb). Contraction of the abductor muscles creates a power stroke in the form of an anterior sweep of the limbs, which leads to a three-dimensional tumbling of the rotifer through the water column. Alternatively, species of Polyarthra possess 12 blade-like appendages that are arranged into four equal bundles; each bundle receives an indirect muscle supply that attaches to the shoulder of the paddles. A single longitudinal paddle muscle supplies each dorsolateral bundle, while a pair of longitudinal paddle muscles supplies each ventrolateral bundle. Contraction of these muscles, whether singly or in concert, functions to abduct the paddles in a power stroke, leading to rotation of the body and movement of the rotifer. The recovery stroke is hypothesized to be a multi-step process that begins with reorientation of the appendages prior to adduction, followed by contraction of various muscles to antagonize the paddle muscles. In total, these observations reveal novel complexities in the rotifer muscular system that aids our understanding of the biophysics of predator avoidance in appendage-bearing rotifers.  相似文献   

7.
Somatic muscles (body-wall and "parenchyma" musculature), muscles of suckers, alimentary tract and excretory bladder of Himasthla elongata cercaria were investigated using fluorescent phalloidin labelling and confocal microscopy. The arrangement of body-wall muscles differs between the certain parts of cercarial body and appears to be the most complicated in the collar district. Among the body-wall musculature, we described U-shaped muscles, which have never been found previously in trematodes. Muscles of oral and ventral suckers are grouped into 6-7 independent layers. In some of those layers, they are arranged bilaterally, which contradicts the tradition to consider the sucker as radially symmetric.  相似文献   

8.
Calponins are proteins present in vertebrate smooth musculature where they occur in association with thin myofilaments. Calponins are not present in vertebrate or invertebrate striated muscles. The blood fluke Schistosoma japonicum expresses a 38.3-kDa protein that bears substantial homology with vertebrate calponin and occurs entirely within smooth musculature of adults. Calponin-like immunoreactivity has been demonstrated in smooth muscles of many invertebrate phyla. The Schistosoma japonicum calponin has been localised in smooth myofibrils of adults where it is associated with myofilaments and sarcoplasmic reticulum. In this study, the ultrastructural localisation of the protein in muscles of S. japonicum cercariae is described. The protein is present in smooth muscles of the forebody and the stratified muscle of the tail. Within the stratified layer, the protein occurs predominantly in transverse arrays of sarcoplasmic reticulum. The localisation data suggest that the calponin-like protein of S. japonicum is involved in contraction of the stratified tail muscle. Furthermore, the presence of a calponin system in the stratified muscle suggests that this muscle is simply a superior form of muscle, closely related to smooth muscles that use a caldesmin-calponin system in contraction.  相似文献   

9.
The architecture of the musculature of the eutardigrade species Milnesium tardigradum Doyère, 1840, Hypsibius sp. and Ramazzottius oberhaeuseri (Doyère in Ann Sci Nat Zool Sér 2(14):269–369, 1840) is investigated by phalloidin staining and confocal laser scanning microscopy. There are methodological problems in staining eutardigrades due to physiological alterations under stress (anhydrobiosis) and due to penetration problems of the cuticle. It is helpful to fix specimens in the state of asphyxy, where animals are stretched following an oxygen shortage in their environment. The musculatures of all three species correspond in their general architecture, but differ in detail, such as in the number of muscles. All muscles are isolated muscle strands. There are on each body side two dorsal and one ventral muscle strands, in addition to a system of dorsoventral, lateral and lateroventral muscles. Seven median ventral attachment points give rise to dorsoventral, ventrolateral and appendage muscles. The appendages receive several muscles originating dorsally and ventrally. The number of muscles and the arrangement differ in each appendage. The fourth appendage shows the greatest differences with a far smaller number of muscles compared to other species. The musculature shows comparably few strict segmental patterns, for example, the musculature of each appendage differs from the other ones. By comparison with literature data on the same species and data of Macrobiotus hufelandi it can be shown that eutardigrades have a roughly comparable muscular architecture, but that there are several differences in detail. Dedicated to Professor Westheide on the occasion of his 70th birthday.  相似文献   

10.
Summary The fibers of drum and trunk muscles of the Tigerfish, Therapon jarbua, differ greatly in diameter. The myofibrils of the trunk muscles are irregularly oriented, while those of the drum muscles are rolled into spiral or concentric bands. Both muscle types possess the sarcomere structure typical of cross-striated musculature. However, the myofibrils of the drum muscles differ greatly in sarcomere length and width from those in the trunk musculature. The trunk muscles contain few mitochondria, whereas in the drum muscles mitochondria are abundant. The sarcoplasmic reticulum (SR) of the drum muscles takes the form of elongated tubes in both the A and the I region; that of the trunk musculature consists of small vesicles. Of the two muscle types, the drum muscle contains more SR. With respect to the form of the T system, the trunk musculature is of the Z type and the drum muscles of the A-I type. The drum muscle displays a considerably greater number of motor endplates; these lack typical junctional folds and have mitochondria with very few cristae. No fat could be demonstrated in either the drum or the trunk muscles. However, the concentration of glycogen is higher in the drum muscle than in the musculature of the trunk.This work was accomplished with support from the Deutsche Forschungsgemeinschaft and is gratefully dedicated to Prof. R. Danneel on the occasion of his 75th birthday.  相似文献   

11.
Summary The skeletal morphology, musculature and innervation of the mandible of the common lobster,Homarus gammarus, are described as a basis for the functional study included in the two subsequent papers.Although the mandible articulation takes the form of a hinge with movement in a single plane, the musculature of the mandible is complex. The main muscles are similar to those ofAstacus (Schmidt, 1915) but some smaller, previously undescribed muscles were found.As forAstacus (Keim, 1915) andCambarus (Chaudonneret, 1956) the mandibular muscles are innervated by two nerve trunks, the inner and outer mandibular nerves. However, differences occur in the branching of these nerves and the muscles which they innervate.A group of sensory cells associated with the posterior stomach nerve (omn 4) are described. It is suggested that these form a proprioceptive organ associated with the hypodermis overlying the lateral mandible articulation.An interesting group of neurones lying at the confluence of nerve branches from omn 2, omn 3, and omn 4 is described.  相似文献   

12.
The cervicothoracic musculature of the adult cockroach, Nauphoeta cinerea (Olivier) is described for the first time. The adult thoracic ventral intersegmental muscles are compared with those of the nymph and of the adult cockroach, Periplaneta americana (Linnaeus).  相似文献   

13.
The larval gut of Drosophila is coated with visceral muscles of mesodermal origin. In the midgut region this musculature comprises circular and longitudinal fibres. The complete visceral musculature is described to be removed during metamorphosis and to be replaced by a newly differentiated imaginal tissue resembling the morphology of the larval musculature. However, progenitors of this imaginal visceral musculature have never been detected prior to differentiation. Here I present results indicating that the longitudinal visceral musculature of the midgut completely persists through metamorphosis. Single cells expressing green fluorescent protein (GFP) as a marker were transplanted at the blastoderm stage. All clones contributing to the longitudinal visceral musculature detected in third instar larvae were recovered after metamorphosis in adult flies. Further evidence for the persistence of the larval visceral musculature was obtained from the P[Gal4] insertion line 5053A. It expresses GAL4 specifically in the longitudinal visceral muscles of the midgut of all developmental stages to the adult fly beginning at the end of embryogenesis. By using GFP as a reporter, it was possible to follow these cells through the entire metamorphosis. Although the muscles undergo dramatic morphological changes including the loss of their contractile system, no evidence for a replacement of the larval visceral musculature by imaginal precursor cells was detected.  相似文献   

14.
15.
The musculature of Phrynomantis stictogaster, a burrowing Papuan microhylid frog, of the subfamily Asterophryinae, is described and compared with accounts of other frogs. P. stictogaster exhibits unusual characters: dense musculature investing an entirely adherent tongue; exceptionally massive jaw musculature; and hitherto underscribed attachments of some muscles in the manus and pes. The presence of an accessory tendon to the M. glutaeus magnus and the pattern of distal thigh tendons confirm previous diagnosis of the Microhylidae, but the presence of an accessory head to M. adductor magnus is a condition previously not noted in the family. Features of the hyoid, pectoral, and thigh muscles resemble those of members of the subfamilies Dyscophinae, Microhylinae, and Spenophryninae.  相似文献   

16.
The nerve pathways in the praesoma are described for a member of the class Eoacanthocephala for the first time. Eleven nerves, five paired and one single, are traced from the cerebral ganglion to their associations with the musculature of the body wall, neck sense organs, and the musculature of the proboscis wall and the invertor muscles of the proboscis. The structure and location of the stutzzelle and series of nerve endings in the hypodermis of the body wall and at the apex of the proboscis are described.  相似文献   

17.
The nerve pathways in the praesoma are described for the first time for a member of the genus Octospinifer. Eleven nerves, five paired, and one single, are traced from the cerebral ganglion to their associations with the musculature of the body wall, neck sense organs, and the musculature of the proboscis wall and the invertor muscles of the proboscis. The structure and location of the Stützzelle (support cell) and its association with the neck sense organs are described. A comparison with the nervous system in the praesoma of Noechinorhynchus and Paulisentis is discussed.  相似文献   

18.
SUMMARY Molecular phylogenetics suggests that the Sipuncula fall into the Annelida, although they are morphologically very distinct and lack segmentation. To understand the evolutionary transformations from the annelid to the sipunculan body plan, it is important to reconstruct the ancestral states within the respective clades at all life history stages. Here we reconstruct the ancestral states for the head/introvert retractor muscles and the body wall musculature in the Sipuncula using Bayesian statistics. In addition, we describe the ontogenetic transformations of the two muscle systems in four sipunculan species with different developmental modes, using F-actin staining with fluorescent-labeled phalloidin in conjunction with confocal laser scanning microscopy. All four species, which have smooth body wall musculature and less than the full set of four introvert retractor muscles as adults, go through developmental stages with four retractor muscles that are eventually reduced to a lower number in the adult. The circular and sometimes the longitudinal body wall musculature are split into bands that later transform into a smooth sheath. Our ancestral state reconstructions suggest with nearly 100% probability that the ancestral sipunculan had four introvert retractor muscles, longitudinal body wall musculature in bands and circular body wall musculature arranged as a smooth sheath. Species with crawling larvae have more strongly developed body wall musculature than those with swimming larvae. To interpret our findings in the context of annelid evolution, a more solid phylogenetic framework is needed for the entire group and more data on ontogenetic transformations of annelid musculature are desirable.  相似文献   

19.
Recently several conflicting hypotheses concerning the basal phylogenetic relationships within the Phasmatodea (stick and leaf insects) have emerged. In previous studies, musculature of the abdomen proved to be quite informative for identifying basal taxa among Phasmatodea and led to conclusions regarding the basal splitting events within the group. However, this character complex was not studied thoroughly for a representative number of species, and usually muscle innervation was omitted. In the present study the musculature and nerve topography of mid-abdominal segments in both sexes of seven phasmid species are described and compared in detail for the first time including all putative basal taxa, e.g. members of Timema, Agathemera, Phylliinae, Aschiphasmatinae and Heteropteryginae. The ground pattern of the muscle and nerve arrangement of mid-abdominal segments, i.e. of those not modified due to association with the thorax or genitalia, is reconstructed. In Timema, the inner ventral longitudinal muscles are present, whereas they are lost in all remaining Phasmatodea (Euphasmatodea). The ventral longitudinal muscles in the abdomen of Agathemera, which span the whole length of each segment, do not represent the plesiomorphic condition as previously assumed, but might be a result of secondary elongation of the external ventral longitudinal muscles. Sexual dimorphism, common within the Phasmatodea, also applies to the muscle arrangement in the abdomen of some species. Only in the females of Haaniella dehaanii (Heteropteryginae) and Phyllium celebicum (Phylliinae) the ventral external longitudinal muscles are elongated and span the length of the whole segment, possibly as a result of convergent evolution.  相似文献   

20.

Background

In order to increase the weak database concerning the organogenesis of Acoela – a clade regarded by many as the earliest extant offshoot of Bilateria and thus of particular interest for studies concerning the evolution of animal bodyplans – we analyzed the development of the musculature of Symsagittifera roscoffensis using F-actin labelling, confocal laserscanning microscopy, and 3D reconstruction software.

Results

At 40% of development between egg deposition and hatching short subepidermal fibres form. Muscle fibre development in the anterior body half precedes myogenesis in the posterior half. At 42% of development a grid of outer circular and inner longitudinal muscles is present in the bodywall. New circular muscles either branch off from present fibres or form adjacent to existing ones. The number of circular muscles is higher than that of the longitudinal muscles throughout all life cycle stages. Diagonal, circular and longitudinal muscles are initially rare but their number increases with time. The ventral side bears U-shaped muscles around the mouth, which in addition is surrounded by a sphincter muscle. With the exception of the region of the statocyst, dorsoventral muscles are present along the entire body of juveniles and adults, while adults additionally exhibit radially oriented internal muscles in the anterior tip. Outer diagonal muscles are present at the dorsal anterior tip of the adult. In adult animals, the male gonopore with its associated sexual organs expresses distinct muscles. No specific statocyst muscles were found. The muscle mantles of the needle-shaped sagittocysts are situated along the lateral edges of the animal and in the posterior end close to the male gonopore. In both juveniles and adults, non-muscular filaments, which stain positively for F-actin, are associated with certain sensory cells outside the bodywall musculature.

Conclusion

Compared to the myoanatomy of other acoel taxa, Symsagittifera roscoffensis shows a very complex musculature. Although data on presumably basal acoel clades are still scarce, the information currently available suggests an elaborated musculature with longitudinal, circular and U-shaped muscles as being part of the ancestral acoel bodyplan, thus increasing the possibility that Urbilateria likewise had a relatively complicated muscular ground pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号