首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studer SM  Joseph S 《Molecular cell》2006,22(1):105-115
Translation initiation is a key step for regulating the level of numerous proteins within the cell. In bacteria, the 30S initiation complex directly binds to the translation initiation region (TIR) of the mRNA. How the ribosomal 30S subunit assembles on highly structured TIR is not known. Using fluorescence-based experiments, we assayed 12 different mRNAs that form secondary structures with various stabilities and contain Shine-Dalgarno (SD) sequences of different strengths. A strong correlation was observed between the stability of the mRNA structure and the association and dissociation rate constants. Interestingly, in the presence of initiation factors and initiator tRNA, the association kinetics of structured mRNAs showed two distinct phases. The second phase was found to be important for unfolding structured mRNAs to form a stable 30S initiation complex. We show that unfolding of structured mRNAs requires a SD sequence, the start codon, fMet-tRNA(fMet), and the GTP bound form of initiation factor 2 bound to the 30S subunit.  相似文献   

2.
3.
Gene expression signals derived from Lactococcus lactis were linked to lacZ-fused genes with different 5'-nucleotide sequences. Computer predictions of mRNA secondary structure were combined with lacZ expression studies to direct base-substitutions that could possibly influence gene expression. Mutations were made such that the DNA sequence upstream of the ATG start codon was not changed. Moreover, care was taken that the substitutions, which were all within the first six codons, neither affected the amino acid sequence of the gene product nor introduced codons rarely used in L. lactis. The results suggest that mRNA secondary structure contributes to the efficiency of translation initiation in L. lactis.  相似文献   

4.
为研究mRNA翻译起始区结构与基因表达的关系,利用密码子的简并性,在不改变表达产物氨基酸序列的前提下定点突变α8干扰素及αA干扰素衍生物基因的5′端若干位点,使其与表达载体重组后转录形成的mRNA翻译起始区结构发生改变。SDS-PAGE及活性测定证实这些改变提高了外源基因的表达水平。RNA斑点印迹表明突变前后基因转录水平差别不大,表达水平的提高主要由于翻译效率的提高。mRNA翻译起始区二级结构预测提示其生成自由能(ΔG)的变化可能与表达水平的提高有关。  相似文献   

5.
6.
7.
Translation of protein from mRNA is a complex multi-step process that occurs at a non-uniform rate. Variability in ribosome speed along an mRNA enables refinement of the proteome and plays a critical role in protein biogenesis. Detailed single protein studies have found both tRNA abundance and mRNA secondary structure as key modulators of translation elongation rate, but recent genome-wide ribosome profiling experiments have not observed significant influence of either on translation efficiency. Here we provide evidence that this results from an inherent trade-off between these factors. We find codons pairing to high-abundance tRNAs are preferentially used in regions of high secondary structure content, while codons read by significantly less abundant tRNAs are located in lowly structured regions. By considering long stretches of high and low mRNA secondary structure in Saccharomyces cerevisiae and Escherichia coli and comparing them to randomized-gene models and experimental expression data, we were able to distinguish clear selective pressures and increased protein expression for specific codon choices. The trade-off between secondary structure and tRNA-concentration based codon choice allows for compensation of their independent effects on translation, helping to smooth overall translational speed and reducing the chance of potentially detrimental points of excessively slow or fast ribosome movement.  相似文献   

8.
9.
10.
Formate dehydrogenase N (FDH-N) of Escherichia coli is a membrane-bound enzyme comprising FdnG, FdnH, and FdnI subunits organized in an (alphabetagamma)3 configuration. The FdnG subunit carries a Tat-dependent signal peptide, which localizes the protein complex to the periplasmic side of the membrane. We noted that substitution of the first arginine (R5) in the twin arginine signal sequence of FdnG for a variety of other amino acids resulted in a dramatic (up to 60-fold) increase in the levels of protein synthesized. Bioinformatic analysis suggested that the mRNA specifying the first 17 codons of fdnG forms a stable stem-loop structure. A detailed mutational analysis has demonstrated the importance of this mRNA stem-loop in modulating FDH-N translation.  相似文献   

11.
On the basis of theoretical analysis of different mRNAs secondary structure it is suggested that the efficiency of procaryotic translation initiation depends to a great extent on the possibility to generate a single-stranded region around the initiation codon. The local disruption of the mRNA secondary structure is mostly determined by interaction according to Shine--Dalgarno of 16S rRNA with the complementary mRNA region. Other mechanisms of single-stranded region generation in the initiation zone of mRNA are discussed.  相似文献   

12.
13.
Sigma S (sigma(s)) encoded by rpoS in Escherichia coli is a stationary phase specific sigma subunit of the RNA polymerase holoenzyme. Widespread among the E. coli K12 strains is an amber mutation that prematurely terminates sigma(s). These rpoSAm mutants would be expected to show no sigma(s) activity. However, suppressor free rpoSAm mutants retain an intermediate catalase activity, a sigma S controlled function. By analyzing the sequence of the rpoS gene we hypothesize that a 277 amino acids long delta1-53 sigma(s) of about 30 kDa can be translated from an internal secondary translation initiation region (STIR, AGGGAGN11GUG) that is located downstream of the amber codon. By cloning this rpoSAm gene, following the expression, function, and N-terminal sequence of this mutant protein, we report the presence of a functional internal STIR in E. coli rpoS, from where a truncated but nevertheless functional form of sigma(s) can be synthesized.  相似文献   

14.
Translational efficiency in Escherichia coli is known to be strongly influenced by the secondary structure around the ribosome‐binding site and the initiation codon in the translational‐initiation region of the mRNA. Several quantitative studies have reported that translational efficiency is attributable to effects on ribosome accessibility predominantly caused by the secondary structure surrounding the ribosome‐binding site. However, the influence of mRNA secondary structure around regions downstream of the initiation codon on translational efficiency after ribosome‐binding step has not been quantitatively studied. Here, we quantitatively analyzed the relationship between secondary structure of mRNA surrounding the region downstream of the initiation codon, referred to as the downstream region (DR), and protein expression levels. Modified hairpin structures containing the initiation codon were constructed by site‐directed mutagenesis, and their effects on expression were analyzed in vivo. The minimal folding free energy (ΔG) of a local hairpin structure was found to be linearly correlated with the relative expression level over a range of fourfold change. These results demonstrate that expression level can be quantitatively controlled by changing the stability of the secondary structure surrounding the DR. Biotechnol. Bioeng. 2009; 104: 611–616 © 2009 Wiley Periodicals, Inc.  相似文献   

15.
Preferential translation of Drosophila heat shock protein 70 (Hsp70) mRNA requires only the 5'-untranslated region (5'-UTR). The sequence of this region suggests that it has relatively little secondary structure, which may facilitate efficient protein synthesis initiation. To determine whether minimal 5'-UTR secondary structure is required for preferential translation during heat shock, the effect of introducing stem-loops into the Hsp70 mRNA 5'-UTR was measured. Stem-loops of -11 kcal/mol abolished translation during heat shock, but did not reduce translation in non-heat shocked cells. A -22 kcal/mol stem-loop was required to comparably inhibit translation during growth at normal temperatures. To investigate whether specific sequence elements are also required for efficient preferential translation, deletion and mutation analyses were conducted in a truncated Hsp70 5'-UTR containing only the cap-proximal and AUG-proximal segments. Linker-scanner mutations in the cap-proximal segment (+1 to +37) did not impair translation. Re-ordering the segments reduced mRNA translational efficiency by 50%. Deleting the AUG-proximal segment severely inhibited translation. A 5-extension of the full-length leader specifically impaired heat shock translation. These results indicate that heat shock reduces the capacity to unwind 5-UTR secondary structure, allowing only mRNAs with minimal 5'-UTR secondary structure to be efficiently translated. A function for specific sequences is also suggested.  相似文献   

16.
17.
Gene expression is known to correlate with the degree of codon bias in many unicellular organisms. However, such a correlation is not observed in some organisms. It was demonstrated that inverted complementary repeats within coding DNA sequences (ORFs) should be considered for proper estimation of the translation efficiency because they can form secondary structures that obstruct ribosome movement. A program was developed for estimating the potential expression of ORFs in unicellular organisms on the basis of their genome sequences. The program computes the elongation efficiency index (EEI) and takes into account three key factors: codon bias, the average number of inverted complementary repeats, and the free energies of potential stem-loop structures formed by these repeats. The influence of these factors on translation was numerically estimated. Their optimal ratio was computed for each organism. EEIs of 384 unicellular organisms (351 bacteria, 28 archaea, and 5 eukaryotes) were computed using the annotated genomes available from GenBank. Five potential evolutionary strategies of translational optimization were determined in the organisms studied. A considerable difference in preferential translational strategies was observed between bacteria and archaea. Significant correlations between EEIs and gene expression levels were shown for two species (Saccharomyces cerevisiae and Helicobacter pylori), using the available microarray data. The method allows the numerical estimation of the translation efficiency of an ORF and optimization of the nucleotide composition of heterologous genes in specified unicellular organisms. The program is available at http://wwwmgs.bionet.nsc.ru/mgs/programs/eei-calculator.  相似文献   

18.
Gene expression is known to correlate with degree of codon bias in many unicellular organisms. However, such correlation is absent in some organisms. Recently we demonstrated that inverted complementary repeats within coding DNA sequence must be considered for proper estimation of translation efficiency, since they may form secondary structures that obstruct ribosome movement. We have developed a program for estimation of potential coding DNA sequence expression in defined unicellular organism using its genome sequence. The program computes elongation efficiency index. Computation is based on estimation of coding DNA sequence elongation efficiency, taking into account three key factors: codon bias, average number of inverted complementary repeats, and free energy of potential stem-loop structures formed by the repeats. The influence of these factors on translation is numerically estimated. An optimal proportion of these factors is computed for each organism individually. Quantitative translational characteristics of 384 unicellular organisms (351 bacteria, 28 archaea, 5 eukaryota) have been computed using their annotated genomes from NCBI GenBank. Five potential evolutionary strategies of translational optimization have been determined among studied organisms. A considerable difference of preferred translational strategies between Bacteria and Archaea has been revealed. Significant correlations between elongation efficiency index and gene expression levels have been shown for two organisms (S. cerevisiae and H. pylori) using available microarray data. The proposed method allows to estimate numerically the coding DNA sequence translation efficiency and to optimize nucleotide composition of heterologous genes in unicellular organisms. Availability: http://www.mgs.bionet.nsc.ru/mgs/programs/eei-calculator/.  相似文献   

19.
20.
为了提高近平滑假丝酵母(Candida parapsilosis CCTCC M203011)的(R)-羰基还原酶在大肠杆菌中的表达水平及催化效率,对酶编码基因mRNA翻译起始区中+1~+78区进行二级结构的优化,并构建了相应的突变体。优化后mRNA翻译起始区的发夹结构明显减少,自由能显著下降(由原始的?9.5kcal/mol降至?5.0kcal/mol),使酶蛋白的表达水平及粗酶比活力分别比优化前提高了4~5倍和61.9%。在高底物浓度(5.0g/L2-羟基苯乙酮)下,优化突变株不对称转化效率较高,产物(R)-苯基乙二醇的光学纯度和产率分别为93.1%e.e.和81.8%,比优化前提高了27.5%和40.5%。研究结果表明:优化mRNA翻译起始区的二级结构,克服蛋白翻译启动的空间位阻,不仅能促进翻译的顺利进行,使目标蛋白得到高效表达,而且有利于蛋白空间结构的正确折叠,有效提高酶蛋白活力及生物催化功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号