首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A combination therapy of metformin hydrochloride (MH) and repaglinide (RG) achieves a perfect glycemic control; however, the combination formulation of immediate release must be taken several times a day, compromising the therapeutic benefits and causing inconveniences to the patients. Herein, a bilayer matrix tablet that aimed at continuously releasing both MH and RG over time was developed, in which the two drugs were formulated into two separated layers. The tablets were prepared by wet granulation method, and the optimized formulation was obtained by evaluating the factors that affected the drug release. The bilayer tablets simultaneously released the two drugs over 12 h; and a better in vivo performance with a steady plasma concentration, markedly lower Cmax, prolonged Tmax, and perfect absorption was obtained. Summarily, the bilayer matrix tablets sustained both MH and RG release over time, thereby prolonging the actions for diabetic therapy and producing better health outcomes.KEY WORDS: bilayer tablets, metformin hydrochloride, pharmacokinetics, repaglinide, sustained release  相似文献   

2.
Development of palatable formulations for pediatric and geriatric patients involves various challenges. However, an innovative development with beneficial characteristics of marketed formulations in a single formulation platform was attempted. The goal of this research was to develop solid oral flexible tablets (OFTs) as a platform for pediatrics and geriatrics as oral delivery is the most convenient and widely used mode of drug administration. For this purpose, a flexible tablet formulation using cetirizine hydrochloride as model stability labile class 1 and 3 drug as per the Biopharmaceutical Classification System was developed. Betadex, Eudragit E100, and polacrilex resin were evaluated as taste masking agents. Development work focused on excipient selection, formulation processing, characterization methods, stability, and palatability testing. Formulation with a cetirizine-to-polacrilex ratio of 1:2 to 1:3 showed robust physical strength with friability of 0.1% (w/w), rapid in vitro dispersion within 30 s in 2–6 ml of water, and 0.2% of total organic and elemental impurities. Polacrilex resin formulation shows immediate drug release within 30 min in gastric media, better taste masking, and acceptable stability. Hence, it is concluded that ion exchange resins can be appropriately used to develop taste-masked, rapidly dispersible, and stable tablet formulations with tailored drug release suitable for pediatrics and geriatrics. Flexible formulations can be consumed as swallowable, orally disintegrating, chewable, and as dispersible tablets. Flexibility in dose administration would improve compliance in pediatrics and geriatrics. This drug development approach using ion exchange resins can be a platform for formulating solid oral flexible drug products with low to medium doses.  相似文献   

3.
An isoconversion paradigm, where times in different temperature and humidity-controlled stability chambers are set to provide a fixed degradant level, is shown to compensate for the complex, non-single order kinetics of solid drug products. A humidity-corrected Arrhenius equation provides reliable estimates for temperature and relative humidity effects on degradation rates. A statistical protocol is employed to determine best fits for chemical stability data, which in turn allows for accurate estimations of shelf life (with appropriate confidence intervals) at any storage condition including inside packaging (based on the moisture vapor transmission rate of the packaging and moisture sorption isotherms of the internal components). These methodologies provide both faster results and far better predictions of chemical stability limited shelf life (expiry) than previously possible. Precise shelf-life estimations are generally determined using a 2-week, product-specific protocol. Once the model for a product is developed, it can play a critical role in providing the product understanding necessary for a quality by design (QbD) filing for product approval and enable rational control strategies to assure product stability. Moreover, this Accelerated Stability Assessment Program (ASAP) enables the coupling of product attributes (e.g., moisture content, packaging options) to allow for flexibility in how control strategies are implemented to provide a balance of cost, speed, and other factors while maintaining adequate stability.  相似文献   

4.
The objective of this study is to use near-infrared spectroscopy (NIRS) coupled with multivariate chemometric models to monitor granule and tablet quality attributes in the formulation development and manufacturing of ciprofloxacin hydrochloride (CIP) immediate release tablets. Critical roller compaction process parameters, compression force (CFt), and formulation variables identified from our earlier studies were evaluated in more detail. Multivariate principal component analysis (PCA) and partial least square (PLS) models were developed during the development stage and used as a control tool to predict the quality of granules and tablets. Validated models were used to monitor and control batches manufactured at different sites to assess their robustness to change. The results showed that roll pressure (RP) and CFt played a critical role in the quality of the granules and the finished product within the range tested. Replacing binder source did not statistically influence the quality attributes of the granules and tablets. However, lubricant type has significantly impacted the granule size. Blend uniformity, crushing force, disintegration time during the manufacturing was predicted using validated PLS regression models with acceptable standard error of prediction (SEP) values, whereas the models resulted in higher SEP for batches obtained from different manufacturing site. From this study, we were able to identify critical factors which could impact the quality attributes of the CIP IR tablets. In summary, we demonstrated the ability of near-infrared spectroscopy coupled with chemometrics as a powerful tool to monitor critical quality attributes (CQA) identified during formulation development.KEY WORDS: chemometrics, crushing force, disintegration, near-infrared spectroscopy, partial least square, principal component analysis, quality by design, roller compaction  相似文献   

5.
The aim of this paper was to evaluate the performance of different swellable polymers in the form of layered matrix tablets to provide controlled therapeutic effect of metoprolol tartrate for twice daily administration. Seven different swellable polymers (carrageenan, hydroxypropylmethyl cellulose, pectin, guar gum, xanthan gum, chitosan, and ethyl cellulose) were evaluated alone or in combination as release-retardant layer. Tablets were tested for weight variation, hardness, diameter/thickness ratio, friability, and drug content uniformity and subjected to in vitro drug-release studies. In addition, the target-release profile of metoprolol tartrate was plotted using its clinical pharmacokinetic data, and the release profiles of the tablets were evaluated in relation to the plotted target release profile. Carrageenan was determined as the best polymer in two-layered matrix tablet formulations due to its better accordance to the target release profile and was selected for preparing three-layered matrix tablets. Carrageenan formulations exhibited super case II release mechanism. Accelerated stability testing was performed on two- and three-layered matrix tablet formulations of carrageenan. The tablets were stored at 25°C/60% relative humidity and 40°C/75% relative humidity for 6 months and examined for physical appearance, drug content, and release characteristics. At the end of the storage time, formulations showed no change either in physical appearance, drug content, or drug-release profile. These results demonstrated the suitability of three-layered tablet formulation of carrageenan to provide controlled release and improved linearity for metoprolol tartrate in comparison to two-layered tablet formulation.  相似文献   

6.
The present research work explores formulation design, critical scale-up considerations and bio-equivalence studies of soluble itraconazole (ITZ) in a tablet form using disordered drug delivery approach. Disordered system of ITZ with a lower viscosity grade of hydroxypropyl methyl cellulose (Pharmacoat 603) was developed for the first time and extensively characterised at three different stages, namely development of glass system, pellet coating and tablet compression using advanced analytical techniques. Complete molecular embedment of ITZ resulting in amorphisation was observed and found to be sustained until end of the real-time and accelerated stability studies. Developed formulation exhibited comparative in vitro dissolution profile (similarity factor >70) with reference product (Sporanox, Janssen Pharmaceutica) in simulated gastric fluid without enzymes. Formulation was scaled up in three batches (50,000 tablets/batch) with detailed validation of critical process parameters using process capability index method. Critical scale-up considerations like control of residual solvent content, effect of pellet size on dissolution, process variables in pellet coating, compressibility of coated pellets and cushioning effect required for desired compressibility were thoroughly discussed. Bioequivalence study of single dose of test and reference product in seven healthy human volunteers under fed condition exhibited significant bioequivalence with results (AUClast and AUC) lying between 90% confidence interval. With increase in number of subjects to 24, a significant effect on pharmacokinetic parameters of both reference as well as developed ITZ tablets was observed.  相似文献   

7.
The study aim was concerned with formulation and evaluation of bioadhesive buccal drug delivery of tizanidine hydrochloride tablets, which is extensively metabolized by liver. The tablets were prepared by direct compression using bioadhesive polymers such as hydroxylpropyl methylcellulose K4M, sodium carboxymethyl cellulose alone, and a combination of these two polymers. In order to improve the permeation of drug, different permeation enhancers like beta-cyclodextrin (β-CD), hydroxylpropyl beta-cyclodextrin (HP-β-CD), and sodium deoxycholate (SDC) were added to the formulations. The β-CD and HP-β-CD were taken in 1:1 molar ratio to drug in formulations. Bioadhesion strength, ex vivo residence time, swelling, and in vitro dissolution studies and ex vivo permeation studies were performed. In vitro release of optimized bioadhesive buccal tablet was found to be non-Fickian. SDC was taken in 1%, 2%, and 3% w/w of the total tablet weight. Stability studies in natural saliva indicated that optimized formulation has good stability in human saliva. In vivo mucoadhesive behavior of optimized formulation was performed in five healthy male human volunteers and subjective parameters were evaluated.  相似文献   

8.
The purpose of the work was to investigate correlation between disintegration and dissolution for immediate release tablets containing a high solubility drug and to identify formulations where disintegration test, instead of the dissolution test, may be used as the acceptance criteria based on International Conference on Harmonization Q6A guidelines. A statistical design of experiments was used to study the effect of filler, binder, disintegrating agent, and tablet hardness on the disintegration and dissolution of verapamil hydrochloride tablets. All formulation variables, i.e., filler, binder, and disintegrating agent, were found to influence tablet dissolution and disintegration, with the filler and disintegrating agent exerting the most significant influence. Slower dissolution was observed with increasing disintegration time when either the filler or the disintegrating agent was kept constant. However, no direct corelationship was observed between the disintegration and dissolution across all formulations due to the interactions between different formulation components. Although all tablets containing sodium carboxymethyl cellulose as the disintegrating agent, disintegrated in less than 3 min, half of them failed to meet the US Pharmacopeia 30 dissolution criteria for the verapamil hydrochloride tablets highlighting the dependence of dissolution process on the formulation components other than the disintegrating agent. The results identified only one formulation as suitable for using the disintegration test, instead of the dissolution test, as drug product acceptance criteria and highlight the need for systematic studies before using the disintegration test, instead of the dissolution test as the drug acceptance criteria. The opinions expressed in this work are only of authors and do not necessarily reflect the policy and statements of the FDA.  相似文献   

9.
In pharmaceutical tablet manufacturing processes, a major source of disturbance affecting drug product quality is the (lot-to-lot) variability of the incoming raw materials. A novel modeling and process optimization strategy that compensates for raw material variability is presented. The approach involves building partial least squares models that combine raw material attributes and tablet process parameters and relate these to final tablet attributes. The resulting models are used in an optimization framework to then find optimal process parameters which can satisfy all the desired requirements for the final tablet attributes, subject to the incoming raw material lots. In order to de-risk the potential (lot-to-lot) variability of raw materials on the drug product quality, the effect of raw material lot variability on the final tablet attributes was investigated using a raw material database containing a large number of lots. In this way, the raw material variability, optimal process parameter space and tablet attributes are correlated with each other and offer the opportunity of simulating a variety of changes in silico without actually performing experiments. The connectivity obtained between the three sources of variability (materials, parameters, attributes) can be considered a design space consistent with Quality by Design principles, which is defined by the ICH-Q8 guidance (USDA 2006). The effectiveness of the methodologies is illustrated through a common industrial tablet manufacturing case study.  相似文献   

10.
Modified-release multiple-unit tablets of loratadine and pseudoephedrine hydrochloride with different release profiles were prepared from the immediate-release pellets comprising the above two drugs and prolonged-release pellets containing only pseudoephedrine hydrochloride. The immediate-release pellets containing pseudoephedrine hydrochloride alone or in combination with loratadine were prepared using extrusion–spheronization method. The pellets of pseudoephedrine hydrochloride were coated to prolong the drug release up to 12 h. Both immediate- and prolonged-release pellets were filled into hard gelatin capsule and also compressed into tablets using inert tabletting granules of microcrystalline cellulose Ceolus KG-801. The in vitro drug dissolution study conducted using high-performance liquid chromatography method showed that both multiple-unit capsules and multiple-unit tablets released loratadine completely within a time period of 2 h, whereas the immediate-release portion of pseudoephedrine hydrochloride was liberated completely within the first 10 min of dissolution study. On the other hand, the release of pseudoephedrine hydrochloride from the prolonged release coated pellets was prolonged up to 12 hr and followed zero-order release kinetic. The drug dissolution profiles of multiple-unit tablets and multiple-unit capsules were found to be closely similar, indicating that the integrity of pellets remained unaffected during the compression process. Moreover, the friability, hardness, and disintegration time of multiple-unit tablets were found to be within BP specifications. In conclusion, modified-release pellet-based tablet system for the delivery of loratadine and pseudoephedrine hydrochloride was successfully developed and evaluated.  相似文献   

11.
Several matrix tablet formulations (hydrophilic-based, wax-based, and three-layer tablets) were designed for controlling the release of the highly water soluble drug, venlafaxine hydrochloride (VenHCl) for once-daily administration. The three-layer tablets consist of non-swellable, compritol-based middle layers containing the drug to which hydrophilic top and bottom barrier layers were applied. A 23 full-factorial design was employed for optimization and to explore the effect of different variables on the release rate of the drug from the three-layer tablets. The optimized levels of each independent variable were based on the criterion of desirability. The calculated values of f 1 and f 2 were 4.131 and 79.356, respectively; indicating that the release profile of the optimized PEO layered tablet formulation is comparable to that of the target release model. The pharmacokinetic parameters of VenHCl from the optimized three-layer tablet was compared to the marketed extended release capsule as a reference in healthy human subjects using a randomized crossover design. In this study, the 90% confidence interval for AUC0–24 and AUC0−∞ are within (0.8–1.25), which satisfied the bioequivalence criteria. It could be concluded that a promising once-daily extended-release three-layer tablet of the highly water soluble drug, VenHCl, was successfully designed.  相似文献   

12.
Sirtuin 1 (SIRT1) is known to play a role in a variety of tumorigenesis processes by deacetylating histone and non‐histone proteins; however, antitumour effects by suppressing SIRT1 activity in non‐small cell lung cancer (NSCLC) remain unclear. This study was designed to scrutinize clinicopathological significance of SIRT1 in NSCLC and investigate effects of metformin on SIRT1 inhibition. This study also evaluated new possibilities of drug combination using a SIRT1 inhibitor, tenovin‐6, in NSCLC cell lines. It was found that SIRT1 was overexpressed in 300 (62%) of 485 formalin‐fixed paraffin‐embedded NSCLC tissues. Its overexpression was significantly associated with reduced overall survival and poor recurrence‐free survival after adjusted for histology and pathologic stage. Thus, suppression of SIRT1 expression may be a reasonable therapeutic strategy for NSCLC. Metformin in combination with tenovin‐6 was found to be more effective in inhibiting cell growth than either agent alone in NSCLC cell lines with different liver kinase B1 (LKB1) status. In addition, metformin and tenovin‐6 synergistically suppressed SIRT1 expression in NSCLC cells regardless of LKB1 status. The marked reduction in SIRT1 expression by combination of metformin and tenovin‐6 increased acetylation of p53 at lysine 382 and enhanced p53 stability in LKB1‐deficient A549 cells. The combination suppressed SIRT1 promoter activity more effectively than either agent alone by up‐regulating hypermethylation in cancer 1 (HIC1) binding at SIRT1 promoter. Also, suppressed SIRT1 expression by the combination synergistically induced caspase‐3‐dependent apoptosis. The study concluded that metformin with tenovin‐6 may enhance antitumour effects through LKB1‐independent SIRT1 down‐regulation in NSCLC cells.  相似文献   

13.
The shelf-life of a previously developed two-part liquid–liquid enzyme ceruminolytic product was improved maintaining the same final reconstituted composition and re-formulating the liquid enzyme portion as a drug granulate by a double wet granulation process. The critical steps for the preparation of the granulate were studied (mixing/granulating times and drying) determining the proteolytic activity, the residual ethanol, and the moisture content of the granulates. The original liquid–liquid formulation had been proven effective as a ceruminolytic agent, but only had stability of greater than 75% enzyme activity for up to 18 months and up to 1 day at room temperature after combining the two parts. The resulting improved product was proven to be stable for up to 24 months at 30°C, and up to 3 days at room temperature after combining the two parts. Therefore, maintaining the enzyme in a granulated form until reconstitution afforded an improvement in stability compared with the original two-part liquid–liquid formulation.  相似文献   

14.
《MABS-AUSTIN》2013,5(4):792-803
The physical and chemical integrity of a biopharmaceutical must be maintained not only during long-term storage but also during administration. Specifically for the intravenous (i.v.) delivery of a protein drug, loss of stability can occur when the protein formulation is compounded with i.v. bag diluents, thus modifying the original composition of the drug product. Here we present the challenges associated with the delivery of a low-dose, highly potent monoclonal antibody (mAb) via the i.v. route. Through parallel in-use stability studies and conventional formulation development, a drug product was developed in which adsorptive losses and critical oxidative degradation pathways were effectively controlled. This development approach enabled the i.v. administration of clinical doses in the range of 0.1 to 0.5 mg total protein, while ensuring liquid drug product storage stability under refrigerated conditions.  相似文献   

15.
All eight stereoisomers of saxagliptin have been synthesized and evaluated for their inhibitory activity against DPP-IV. It was unambiguously confirmed that the configuration of saxagliptin was critical to potent inhibition of DPP-IV. Docking study was performed to elucidate the configuration–activity relationship of saxagliptin stereoisomers. Tyr662 and Tyr470 have been suggested as the key residues of DPP-IV interacting with the inhibitors. This work provides valuable information for further inhibitor design against DPP-IV.  相似文献   

16.
The addition of surfactant in tablet was a well-defined approach to improve drug dissolution rate. While the selected surfactant played a vital role in improving the wettability of tablet by medium, it was equally important to improve the dissolution rate by permeation effect due to production of pores or the reduced inter-particle adhesion. Furthermore, understanding the mechanism of dissolution rate increased was significant. In this work, contact angle measurement was taken up as an alternative approach for understanding the dissolution rate enhancement for tablet containing surfactant. Ethylcellulose, as a substrate, was used to prepare tablet. Four surfactants, sodium dodecyl sulfate (SDS), sodium dodecylbenzenesulfonate (SDBS), dodecyltrimethylammonium bromide (DTAB), and sodium lauryl sulfonate (SLS), were used. Berberine hydrochloride, metformin hydrochloride, and rutin were selected as model drugs. The contact angle of tablet in the absence and presence of surfactant was measured to explore the mechanism. The dissolution test was investigated to verify the mechanism and to establish a correlation with the contact angle. The result showed that the mechanism was the penetration effect rather than the wetting effect. The dissolution increased with a reduction in the contact angle. DTAB was found to obtain the highest level of dissolution enhancement and the lowest contact angle, while SDS, SDBS, and SLS were found to be the less effective in both dissolution enhancement and contact angle decrease. Therefore, contact angle was a good indicator for dissolution behavior besides exploring the mechanism of increased dissolution, which shows great potential in formula screening.  相似文献   

17.
Directly compressible co-processed excipient systems facilitate orodispersible tablets (ODTs) manufacturing. Despite several excipient systems available, it is reported that the incorporation of high drug dose into the tablet mass may negatively affect both disintegration and mechanical properties. Therefore the influence of drug properties on the quality of orodispersible tablets was investigated. Fast dissolving tablet matrix was made of a co-processed excipient system F-Melt. Two grades of F-Melt that differed in composition, particle shape, and specific surface area were used to form tablet matrix. Ibuprofen, diclofenac sodium, and diltiazem hydrochloride were chosen as model drugs of different physicochemical properties such as solubility, particle size, and shape. Ninety formulations containing 12.5, 25, or 50 wt% of the model drug and F-Melt type C or M were prepared by direct compression. The quality of tablets was examined on the base of disintegration time, wetting time, mechanical resistance and texture analysis. The results showed that F-Melt grade, drug solubility, and its dose had an influence on the quality of tablets. From ninety formulations prepared, only four batches containing F-Melt type C and 12.5 wt% of ibuprofen, diclofenac sodium, or diltiazem hydrochloride could be classified as ODTs. Their disintegration time ranged from 41 to 144 s. In the case of F-Melt type M, tablets disintegrating within 101 s of friability below 1% could be prepared only if 12.5 wt% of diclofenac sodium was incorporated into the tablet mass.Key words: diclofenac sodium, diltiazem hydrochloride, direct compression, F-Melt, ibuprofen, ODTs  相似文献   

18.
As outlined in the ICH Q8(R2) guidance, identifying the critical quality attributes (CQA) is a crucial part of dosage form development; however, the number of possible formulation and processing factors that could influence the manufacturing of a pharmaceutical dosage form is enormous obviating formal study of all possible parameters and their interactions. Thus, the objective of this study is to examine how quality risk management can be used to prioritize the number of experiments needed to identify the CQA, while still maintaining an acceptable product risk profile. To conduct the study, immediate-release ciprofloxacin tablets manufactured via roller compaction were used as a prototype system. Granules were manufactured using an Alexanderwerk WP120 roller compactor and tablets were compressed on a Stokes B2 tablet press. In the early stages of development, prior knowledge was systematically incorporated into the risk assessment using failure mode and effect analysis (FMEA). The factors identified using FMEA were then followed by a quantitative assessed using a Plackett–Burman screening design. Results show that by using prior experience, literature data, and preformulation data the number of experiments could be reduced to an acceptable level, and the use of FMEA and screening designs such as the Plackett Burman can rationally guide the process of reducing the number experiments to a manageable level.KEY WORDS: failure mode effect analysis (FMEA), Plackett–Burman, quality by design (QbD), quality risk management, roller compaction, tablet and ciprofloxacin  相似文献   

19.
The objective of the present studies was systematic development of floating-bioadhesive gastroretentive tablets of cefuroxime axetil employing rational blend of hydrophilic polymers for attaining controlled release drug delivery. As per the QbD-based approach, the patient-centric target product profile and quality attributes of tablet were earmarked, and preliminary studies were conducted for screening the suitability of type of polymers, polymer ratio, granulation technique, and granulation time for formulation of tablets. A face-centered cubic design (FCCD) was employed for optimization of the critical material attributes, i.e., concentration of release controlling polymers, PEO 303 and HPMC K100 LV CR, and evaluating in vitro buoyancy, drug release, and ex vivo mucoadhesion strength. The optimized formulation was embarked upon through numerical optimization, which yield excellent floatation characteristic with drug release control (i.e., T 60%?>?6 h) and bioadhesion strength. Drug-excipient compatibility studies through FTIR and P-XRD revealed the absence of any interaction between the drug and polymers. In vivo evaluation of the gastroretentive characteristics through X-ray imaging and in vivo pharmacokinetic studies in rabbits revealed significant extension in the rate of drug absorption (i.e., T max, K a, and MRT) from the optimized tablet formulation as compared to the marketed formulation. Successful establishment of various levels of in vitro/in vivo correlations (IVIVC) substantiated high degree of prognostic ability of in vitro dissolution conditions in predicting the in vivo performance. In a nutshell, the studies demonstrate successful development of the once-a-day gastroretentive formulations of cefuroxime axetil with controlled drug release profile and improved compliance.  相似文献   

20.
A quantitative, model-based risk assessment process was evaluated using Bayesian parameter estimation to determine the posterior distribution of the probability of a model tablet formulation’s (gabapentin) ability to meet end-of-expiry stability criteria-based manufacturing controls. Experimental data was obtained from an FDA-supported, multi-year project that involved researchers at nine universities working collaboratively with industrial and governmental scientists under the leadership of the National Institute for Pharmaceutical Technology and Education (NITPE). The risk assessment process involved the development of a design space manufacturing model and shelf life stability model that shared stability-related critical quality attributes (CQAs). Monte Carlo simulations of the design space and shelf life models that uses model parameter uncertainty to estimate the probability of shelf life failure as a function of manufacturing control. The resultant linked design space and shelf life stability models were tested by comparing model predicted and observed long-term stability data generated under a variety of pilot scale production conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号