首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Although the detection of viable probiotic bacteria following their ingestion and passage through the gastrointestinal tract (GIT) has been well documented, their mucosal attachment in vivo is more difficult to assess. In this study, we investigated the survival and mucosal attachment of multi-strain probiotics transiting the rat GIT. Rats were administered a commercial mixture of the intestinal probiotics Lactobacillus acidophilus LA742, Lactobacillus rhamnosus L2H and Bifidobacterium lactis HN019 and the oral probiotic Streptococcus salivarius K12 every 12 h for 3 days. Intestinal contents, mucus and faeces were tested 6 h, 3 days and 7 days after the last dose by strain-specific enumeration on selective media and by denaturing gradient gel electrophoresis. At 6 h, viable cells and DNA corresponding to all four probiotics were detected in the faeces and in both the lumen contents and mucus layers of the ileum and colon. Viable probiotic cells of B. lactis and L. rhamnosus were detected for 7 days and L. acidophilus for 3 days after the last dose. B. lactis and L. rhamnosus persisted in the ileal mucus and colon contents, whereas the retention of L. acidophilus appeared to be relatively higher in colonic mucus. No viable cells of S. salivarius K12 were detected in any of the samples at either day 3 or 7. The study demonstrates that probiotic strains of intestinal origin but not of oral origin exhibit temporary colonisation of the rat GIT and that these strains may have differing relative affinities for colonic and ileal mucosa.  相似文献   

2.
Coconut water is becoming an increasingly popular beverage and sports drink in tropical countries due to its high mineral content. Probiotic fermentation of coconut water would provide consumers with a novel probiotic beverage which can provide both hydration and probiotic benefits. The aim of this study was to assess the growth, survival and fermentation performance of two probiotic bacteria in coconut water. Lactobacillus acidophilus L10 and L. casei L26 grew well in coconut water and showed similar growth patterns. The viable cell count of the two probiotic cultures reached approximately 108 CFU/ml after 2 days fermentation at 37 °C and maintained approximately107–108 CFU/ml after 26 days at 4 °C. Changes in total soluble solids (oBrix), pH, sugars, organic acids and minerals were similar between the two probiotic cultures, except for fructose, glucose, copper, phosphorus and lactic, acetic and malic acids. There were significant variations between the two cultures in their ability to produce and consume these compounds. L. acidophilus produced higher amounts of 2-heptanone, 2-nonanone, benzaldehyde, 2-heptanol, 2-nonanol, δ-octalactone and δ-dodecalactone, whereas L. casei produced higher amounts of acetic acid, diacetyl, acetoin, δ-decalactone, 3-methyl-3-buten-1-ol, linalool, 1-octanol, p-tolualdehyde and ethyl 2-hydroxypropanoate. There was no substantial change in mineral content. These results suggest the feasibility of fermenting coconut water into a probiotic beverage, especially for sports nutrition, with the dual benefits of electrolytes and probiotics.  相似文献   

3.
The probiotic industry faces the challenge of retention of probiotic culture viability as numbers of these cells within their products inevitably decrease over time. In order to retain probiotic viability levels above the therapeutic minimum over the duration of the product’s shelf life, various methods have been employed, among which encapsulation has received much interest. In line with exploitation of encapsulation for protection of probiotics against adverse conditions, we have previously encapsulated bifidobacteria in poly-(vinylpyrrolidone)-poly-(vinylacetate-co-crotonic acid) (PVP:PVAc-CA) interpolymer complex microparticles under supercritical conditions. The microparticles produced had suitable characteristics for food applications and also protected the bacteria in simulated gastrointestinal fluids. The current study reports on accelerated shelf life studies of PVP:PVAc-CA encapsulated Bifidobacterium lactis Bb12 and Bifidobacterium longum Bb46. Samples were stored as free powders in glass vials at 30 °C for 12 weeks and then analysed for viable counts and water activity levels weekly or fortnightly. Water activities of the samples were within the range of 0.25–0.43, with an average a w  = 0.34, throughout the storage period. PVP:PVAc-CA interpolymer complex encapsulation retained viable levels above the recommended minimum for 10 and 12 weeks, for B. longum Bb46 and B. lactis Bb12, respectively, thereby extending their shelf lives under high storage temperature by between 4 and 7 weeks. These results reveal the possibility for manufacture of encapsulated probiotic powders with increased stability at ambient temperatures. This would potentially allow the supply of a stable probiotic formulation to impoverished communities without proper storage facilities recommended for most of the currently available commercial probiotic products.  相似文献   

4.
The aim of this study was to evaluate the effect of Lactobacillus rhamnosus IMC 501® and Lactobacillus paracasei IMC 502® on oxidative stress in athletes during a four-week period of intense physical activity. Two groups of twelve subjects each were selected for this analysis. The first group consumed a daily dose of a mixture of the two probiotic strains (1:1 L. rhamnosus IMC 501® and L. paracasei IMC 502®; ~109 cells/day) for 4 weeks. The second group (control) did not consume any supplements during the 4 weeks. Blood samples collected immediately before and after the supplementation were analyzed, and plasma levels of reactive oxygen metabolites and biological antioxidant potential were determined. Faeces were also collected and analyzed before and at the end of the probiotic supplementation. Antioxidative activity and oxidative stress resistance of the two strains were determined in vitro. Results demonstrated that intense physical activity induced oxidative stress and that probiotic supplementation increased plasma antioxidant levels, thus neutralizing reactive oxygen species. The two strains, L. rhamnosus IMC 501® and L. paracasei IMC 502®, exert strong antioxidant activity. Athletes and all those exposed to oxidative stress may benefit from the ability of these probiotics to increase antioxidant levels and neutralize the effects of reactive oxygen species.  相似文献   

5.
Loss in probiotic viability upon exposure to stressful storage and transport conditions has plagued the probiotic market worldwide. Lactobacillus acidophilus is an important probiotic that is added to various functional foods. It is known to be fairly labile and susceptible to temperature variations that it encounters during processing and storage which increases production cost. It has been repeatedly demonstrated that pre-exposure to sub-lethal doses of stress, particularly, temperature and pH, leads to improved survival of various probiotics when they subsequently encounter the same stress of a much greater magnitude. Attempts to adapt L. acidophilus to temperatures as high as 65 °C to arrive at a thermotolerant variant have not been reported previously. To improve viability at elevated temperatures, we gradually adapted the L. acidophilus NCFM strain to survival at 65 °C for 40 min. Following adaptation, the variant showed a 2-log greater survival compared to wild-type at 65 °C. Interestingly, this thermotolerant variant also demonstrated a 2-log greater stability compared to wild-type at pH 2.0. The improved pH and temperature stress tolerance exhibited by this variant remained unaltered even when the strain was lyophilized. Moreover, the thermotolerant variant demonstrated improved stability compared to wild-type when stored for up to a week at 37 and 42 °C. Probiotic properties of the variant such as adherence to epithelial cells and antibacterial activity remained unaltered. This strain can potentially help address the issue of significant loss in viable cell counts of L. acidophilus which is typically encountered during probiotic manufacture and storage.  相似文献   

6.
Bovine lactoferrin (bLf) is a natural iron-binding protein and it has been suggested to be a prebiotic agent, but this finding remains inconclusive. This study explores the prebiotic potential of bLf in 14 probiotics. Initially, bLf (1–32 mg/mL) treatment showed occasional and slight prebiotic activity in several probiotics only during the late experimental period (48, 78 h) at 37 °C. We subsequently supposed that bLf exerts stronger prebiotic effects when probiotic growth has been temperately retarded. Therefore, we incubated the probiotics at different temperatures, namely 37 °C, 28 °C, room temperature (approximately 22–24 °C), and 22 °C, to retard or inhibit their growth. As expected, bLf showed more favorable prebiotic activity in several probiotics when their growth was partially retarded at room temperature. Furthermore, at 22 °C, the growth of Bifidobacterium breve, Lactobacillus coryniformis, L. delbrueckii, L. acidophilus, B. angulatum, B. catenulatum, and L. paraplantarum were completely blocked. Notably, these probiotics started regrowing in the presence of bLf (1–32 mg/mL) in a significant and dose-dependent manner. Accordingly, bLf significantly increased the growth of Pediococcus pentosaceus, L. rhamnosus, and L. paracasei (BCRC 17483; a locally isolated strain) when their growth was retarded by incubation at 22 °C. In conclusion, bLf showed inconsistent prebiotic activity in the 14 probiotics at 37 °C, but revealed strong prebiotic activity in 10 probiotic strains at 22 °C. Therefore, this study enables determining additional roles of Lf in probiotic strains, which can facilitate developing novel combinational approaches by simultaneously using Lf and specific probiotics.  相似文献   

7.
In order to develop a multi-microbe probiotic preparation of Lactobacillus reuteri G8-5 and Bacillus subtilis MA139 in solid-state fermentation, a series of parameters were optimized sequentially in shake flask culture. The effect of supplementation of B. subtilis MA139 as starters on the viability of L. reuteri G8-5 was also explored. The results showed that the optimized process was as follows: water content, 50 %; initial pH of diluted molasses, 6.5; inocula volume, 2 %; flask dry contents, 30~35 g/250 g without sterilization; and fermentation time, 2 days. The multi-microbial preparations finally provided the maximum concentration of Lactobacillus of about 9.01?±?0.15 log CFU/g and spores of Bacillus of about 10.30?±?0.08 log CFU/g. Compared with pure fermentation of L. reuteri G8-5, significantly high viable cells, low value of pH, and reducing sugar in solid substrates were achieved in mixed fermentation in the presence of B. subtilis MA139 (P?<?0.05). Meanwhile, the mixed fermentation showed the significantly higher antimicrobial activity against E. coli K88 (P?<?0.05). Based on the overall results, the optimized process enhanced the production of multi-microbe probiotics in solid-state fermentation with low cost. Moreover, the viability of L. reuteri G8-5 could be significantly enhanced in the presence of B. subtilis MA139 in solid-state fermentation, which favored the production of probiotics for animal use.  相似文献   

8.
Inorganic polyphosphate (polyP) was previously identified as a probiotic-derived substance that enhances intestinal barrier function. PolyP-accumulating bacteria are expected to have beneficial effects on the human gastrointestinal tract. In this study, we selected Lactobacillus paracasei JCM 1163 as a strain with the potential to accumulate polyP, because among the probiotic bacteria stored in our laboratory, it had the largest amount of polyP. The chain length of polyP accumulated in L. paracasei JCM 1163 was approximately 700 phosphate (Pi) residues. L. paracasei JCM 1163 accumulated polyP when Pi was added to Pi-starved cells. We further improved the ability of L. paracasei JCM 1163 to accumulate polyP by nitrosoguanidine mutagenesis. The mutant accumulated polyP at a level of 1500 nmol/mg protein—approximately 190 times that of the wild-type strain. PolyP extracted from the L. paracasei JCM 1163 significantly suppressed the oxidant-induced intestinal permeability in mouse small intestine. In conclusion, we have succeeded in breeding the polyP-accumulating Lactobacillus mutant that is expected to enhance intestinal barrier function.  相似文献   

9.
The susceptibility of probiotics to low pH and high temperature has limited their use as nutraceuticals. In this study, enhanced protection of probiotics via microencapsulation was achieved. Lactobacillus plantarum LAB12 were immobilised within polymeric matrix comprised of alginate (Alg) with supplementation of cellulose derivatives (methylcellulose (MC), sodium carboxymethyl cellulose (NaCMC) or hydroxypropyl methylcellulose (HPMC)). L. plantarum LAB12 encapsulated in Alg-HPMC(1.0) and Alg-MC(1.0) elicited improved survivability (91%) in simulated gastric conditions and facilitated maximal release (~100%) in simulated intestinal condition. Alg-HPMC(1.0) and Alg-MC(1.0) significantly reduced (P < 0.05) the viability loss of LAB12 (viability loss <7%) when compared to Alg alone (viability loss <13%) under extreme temperatures (75 and 90 °C). Four-week storage of encapsulated LAB12 at 4 °C yielded viable counts >7 log CFU g?1. Alg-MC and Alg-HPMC improved the survival of LAB12 against simulated gastric condition (9.24 and 9.55 log CFU g?1, respectively), temperature up to 90 °C (9.54 and 9.86 log CFU g?1, respectively) and 4-week of storage at 4 °C (8.61 and 9.23 log CFU g?1, respectively) with sustained release of probiotic in intestinal condition (>9 log CFU g?1). These findings strongly suggest the potential of cellulose derivatives supplemented Alg bead as protective micro-transport for probiotic strains. They can be safely incorporated into new functional food or nutraceutical products.  相似文献   

10.
This study was performed to determine the viability of Lactobacillus acidophilus and Bifidobacterium bifidum in yogurt made with strawberry marmalade (SM) and to examine the quality properties of probiotic yogurt. Acidity, pH, bacterial counts and sensory analysis of the yogurt samples were investigated on days 1, 3, 5, 7, 10 and 14 during storage at 4 °C. The survival rate of L. acidophilus was greater than that of B. bifidum. The viability of L. acidophilus decreased during the storage period, but B. bifidum numbers remained stable during the storage period. The highest L. acidophilus count (7.20 log cfu/g) was found in L. acidophilus + B. bifidum SM yogurt on day 1. The highest B. bifidum count (6.13 log cfu/g) was detected in yogurt containing L. acidophilus + B. bifidum SM yogurt on day 7. Yeast and mould counts of all yogurts increased during the storage period. Coliform bacteria and Staphylococcus aureus were not detected in the yogurt samples. The highest overall acceptance sensory score was observed in yogurts containing L. acidophilus. Considering the sensory and probiotic characteristics of all yogurt samples, this study suggested that strawberry yogurt with a suitable 5–7 day storage period can be produced with single L. acidophilus addition or single B. bifidum addition.  相似文献   

11.

Background

While the use of probiotics to treat or prevent inflammatory bowel disease (IBD) has been proposed, to this point the clinical benefits have been limited. In this report we analyzed the immunological activity of three strains of Lactobacillus to predict their in vivo efficacy in protecting against experimental colitis.

Methodology/Principal Findings

We compared the immunological properties of Lactobacillus plantarum NCIMB8826, L. rhamnosus GG (LGG), L. paracasei B21060 and pathogenic Salmonella typhimurium (SL1344). We studied the stimulatory effects of these different strains upon dendritic cells (DCs) either directly by co-culture or indirectly via conditioning of an epithelial intermediary. Furthermore, we characterized the effects of these strains in vivo using a Dextran sulphate sodium (DSS) model of colitis.We found that the three strains exhibited different abilities to induce inflammatory cytokine production by DCs with L. plantarum being the most effective followed by LGG and L. paracasei. L. paracasei minimally induced the release of cytokines, while it also inhibited the potential of DCs to both produce inflammatory cytokines (IL-12 and TNF-α) and to drive Th1 T cells in response to Salmonella. This effect on DCs was found under both direct and indirect stimulatory conditions – i.e. mediated by epithelial cells - and was dependent upon an as yet unidentified soluble mediator. When tested in vivo, L. plantarum and LGG exacerbated the development of DSS-induced colitis and caused the death of treated mice, while, conversely L. paracasei was protective.

Conclusions

We describe a new property of probiotics to either directly or indirectly inhibit DC activation by inflammatory bacteria. Moreover, some immunostimulatory probiotics not only failed to protect against colitis, they actually amplified the disease progression. In conclusion, caution must be exercised when choosing a probiotic strain to treat IBD.  相似文献   

12.
With the aim of developing new functional foods, a traditional product, the table olive, was used as a vehicle for incorporating probiotic bacterial species. Survival on table olives of Lactobacillus rhamnosus (three strains), Lactobacillus paracasei (two strains), Bifidobacterium bifidum (one strain), and Bifidobacterium longum (one strain) at room temperature was investigated. The results obtained using a selected olive sample demonstrated that bifidobacteria and one strain of L. rhamnosus (Lactobacillus GG) showed a good survival rate, with a recovery of about 106 CFU g−1 after 30 days. The Lactobacillus GG population remained unvaried until the end of the experiment, while a slight decline (to about 105 CFU g−1) was observed for bifidobacteria. High viability, with more than 107 CFU g−1, was observed throughout the 3-month experiment for L. paracasei IMPC2.1. This strain, selected for its potential probiotic characteristics and for its lengthy survival on olives, was used to validate table olives as a carrier for transporting bacterial cells into the human gastrointestinal tract. L. paracasei IMPC2.1 was recovered from fecal samples in four out of five volunteers fed 10 to 15 olives per day carrying about 109 to 1010 viable cells for 10 days.  相似文献   

13.
Probiotic delivery systems are widely used nutraceutical products for the supplementation of natural intestinal flora. These delivery systems vary greatly in effectiveness to exert health benefits for a patient. Probiotic delivery systems can be categorized into conventional, pharmaceutical formulations, and non-conventional, mainly commercial food-based, products. The degree of health benefits provided by these probiotic formulations varies in their ability to deliver viable, functional bacteria in large enough numbers (effectiveness), to provide protection against the harsh effects of the gastric environment and intestinal bile (in vivo protection), and to survive formulation processes (viability). This review discusses the effectiveness of these probiotic delivery systems to deliver viable functional bacteria focusing on the ability to protect the encapsulated probiotics during formulation process as well as against harsh physiological conditions through formulation enhancements using coatings and polymer enhancements. A brief overview on the health benefits of probiotics, current formulation, patient and legal issues facing probiotic delivery, and possible recommendations for the enhanced delivery of probiotic bacteria are also provided. Newer advanced in vitro analyses that can accurately determine the effectiveness of a probiotic formulation are also discussed with an ideal probiotic delivery system hypothesized through a combination of the two probiotic delivery systems described.  相似文献   

14.

Background

Listeria monocytogenes, an intracellular foodborne pathogen, infects immunocompromised hosts. The primary route of transmission is through contaminated food. In the gastrointestinal tract, it traverses the epithelial barrier through intracellular or paracellular routes. Strategies to prevent L. monocytogenes entry can potentially minimize infection in high-risk populations. Listeria adhesion protein (LAP) aids L. monocytogenes in crossing epithelial barriers via the paracellular route. The use of recombinant probiotic bacteria expressing LAP would aid targeted clearance of Listeria from the gut and protect high-risk populations from infection.

Methodology/Principal Findings

The objective was to investigate the ability of probiotic bacteria or LAP-expressing recombinant probiotic Lactobacillus paracasei (LbpLAP) to prevent L. monocytogenes adhesion, invasion, and transwell-based transepithelial translocation in a Caco-2 cell culture model. Several wild type probiotic bacteria showed strong adhesion to Caco-2 cells but none effectively prevented L. monocytogenes infection. Pre-exposure to LbpLAP for 1, 4, 15, or 24 h significantly (P<0.05) reduced adhesion, invasion, and transepithelial translocation of L. monocytogenes in Caco-2 cells, whereas pre-exposure to parental Lb. paracasei had no significant effect. Similarly, LbpLAP pre-exposure reduced L. monocytogenes translocation by as much as 46% after 24 h. LbpLAP also prevented L. monocytogenes-mediated cell damage and compromise of tight junction integrity. Furthermore, LbpLAP cells reduced L. monocytogenes-mediated cell cytotoxicity by 99.8% after 1 h and 79% after 24 h.

Conclusions/Significance

Wild type probiotic bacteria were unable to prevent L. monocytogenes infection in vitro. In contrast, LbpLAP blocked adhesion, invasion, and translocation of L. monocytogenes by interacting with host cell receptor Hsp60, thereby protecting cells from infection. These data show promise for the use of recombinant probiotics in preventing L. monocytogenes infection in high-risk populations.  相似文献   

15.
Diarrhea is considered as an important cause of morbidity and mortality, even though one of the main reasons of death following diarrhea is initiated by dysentery. In recent years, the consumption of probiotics has been proposed for the treatment of infectious diarrhea. Despite most of the studies on probiotics have focused on acute watery diarrhea, few studies in the field of dysentery have found beneficial effects of probiotics. This study is a randomized double-blind clinical trial. The patients were randomly placed into control and case groups. In the intervention group, the patients received probiotics in the form of Kidilact® sachet, which contained high amounts of 7-strain friendly bacteria strains of Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus bulgaricus, Bifidobacterium infantis, Bifidobacterium breve, and Streptococcus thermophiles. On the other hand, the patients in the control group received placebo sachets on a daily basis for 5 days. It is notable that the treatment protocol of acute dysentery was done on both groups. The results of this study showed significant differences in the duration of blood in diarrhea between probiotic consumers (2.62 days) and the control group (3.16 days) (P value = 0.05). Additionally, significant differences in the average length of hospitalization in probiotic consumers (3.16 days) and control (3.66 days), (P value = 0.02) could be claimed that the consumption of probiotics is effective in reducing the duration of dysentery and diarrhea. The results of this study suggest that the use of probiotics can be effective in reducing the duration of blood in diarrhea. This study was also recorded in the Iran center of clinical trials registration database (IRCT2014060617985N1).  相似文献   

16.
Due to problem of preservation of dairy products which serve as a matrix for probiotics, it is challenging to use these probiotics as food supplements in many developing countries. To determine the suitability of the Lactobacillus strains for exploitation as probiotics in honey, we investigated the effect of their storage on the viability, functionality, and the mechanism associated with their protective effect. Three isolates obtained from our laboratory collection were identified through amplification of the 16S rRNA gene. The viability of the strains in honey at different storage conditions was studied. Three genes (hdc, gtf, and clpL) responsible for the resistance of bacteria in acidic environments were screened. SDS-PAGE analysis of total protein was performed to observe protein profile changes of the strains after exposure to honey. All the three isolates, namely, GGU, GLA51, and GLP56, were identified as Lactobacillus plantarum strains. After 28 days of storage in honey at 4 °C, viable cell concentrations of the three strains were higher than 2.04?×?106 CFU/ml. During the same period at room temperature, only the Lactobacillus plantarum GLP56 strain remained viable with a cell concentration of 1.86?×?104 CFU/ml. The clpL gene coding for ATPase was detected in all the three strains. The protein of molecular weight ~?50 kDa was absent in the protein profile of Lactobacillus plantarum GGU after 60 days of storage in honey at 4 °C. The Lactobacillus plantarum GLP56, Lactobacillus plantarum GLA51, and Lactobacillus plantarum GGU strains exposed to honey can withstand acidic environmental stress but their viability declines over time.  相似文献   

17.
Aims: To evaluate the positive influence of the probiotic strain Lactobacillus paracasei LMGP22043 carried by artichokes into the human gut with special reference to faecal bacterial balance, short‐chain fatty acid concentrations and enzyme activities in a randomized, double‐blind human trial in comparison with probiotic‐free artichokes (control). Methods: Twenty subjects were randomized into two groups, which consumed daily 180 g of the artichoke product (probiotic or control) during two 15‐day study periods (periods 1 and 2) separated by a 15‐day washout in a crossover manner. Faecal samples were subjected to microbiological and biochemical analyses, and a strain‐specific PCR was performed to monitor the probiotic strain. Results: The probiotic strain, transported by the vegetable matrix, transiently colonized the gut of 17/20 subjects (median 6·87 log CFU g?1 faeces), antagonized Escherichia coli and Clostridium spp. and increased the genetic diversity of lactic population based on REP‐PCR profiles, mainly after period 1. Conclusions: The probiotic L. paracasei LMGP22043 successfully colonized the human gut and positively influenced faecal bacteria and biochemical parameters. Significance and Impact of the Study: The association of the probiotic L. paracasei with a food carrier rich in fibre can represent a new strategy for favouring a daily supply of probiotics and attracting more consumers to vegetable food fortified with probiotic strains.  相似文献   

18.

According to FAO and WHO, probiotics are defined as live microorganisms that, when administered in adequate amounts, confer a health benefit on the host. Most probiotic bacteria used today belong to the genera Lactobacillus and Bifidobacterium and are of animal or human origin. The fundamental characteristic routinely evaluated in potential probiotics strains is their limited viability loss during gastrointestinal transit (GIT), but to date, no studies reported whether probiotics, besides viability, still also maintain their beneficial properties intact. To study this aspect, we considered two strains, Lactobacillus rhamnosus DTA 79 and L. paracasei DTA 83, previously characterised for the presence of some probiotic properties, isolated from faeces of 7- to 21-day-old babies. Here, we examined some additional properties, namely antibiotic resistance, resistance to lysozyme, presence of haemolytic activity and inhibition of pathogen biofilm formation. We then tested the effect of in vitro GIT on all these features and our results show evidence that this procedure had in some cases limited and in others no significant effects on them. Additionally, we examined the gastrointestinal resistance of the strains after skim milk fermentation and successive storage of the product for 20 and 40 days at refrigeration temperature, to see whether prolonged storage could weaken cell resistance to GIT. Our results demonstrate that a protracted refrigeration period before in vitro GIT did not affect or influenced very weakly this essential probiotic property.

  相似文献   

19.
The objective of the present study was to develop a probiotic of canine-origin for its potential application in pet nutrition. Accordingly, 32 lactic acid bacteria (LAB) strains were isolated from faeces of dogs, out of which 9 strains were short-listed for further in vitro testing based on the aggregation time and cell surface hydrophobicity. The results of acid-, bile- and phenol-tolerance tests indicated that out of the nine, isolate cPRO23 was having better resistance to these adverse conditions likely to be encountered in the gastrointestinal tract. The isolate also showed optimal enzymatic activities for amylase, lipase and protease. Further assessments also indicated its superiority in terms of co-aggregation and antagonistic activity against pathogenic strains of Salmonella typhimurium and Salmonella enteritidis. Subsequently, the isolate was identified through 16S rRNA sequencing and sequence homology, and designated as Lactobacillus johnsonii CPN23. The candidate probiotic was then evaluated in vivo using 15 adult Labrador dogs, divided into 3 groups, viz. CON (with no probiotics), dPRO (with Lactobacillus acidophilus NCDC 15 as a conventional dairy-origin probiotic) and cPRO (with L. johnsonii CPN23 as a canine-origin probiotic). Results of the 9-week study indicated that supplementation of cPRO improved (P < 0.05) the faecal concentration of acetate and butyrate with a concomitant reduction (P < 0.05) in faecal ammonia. The cell-mediated immune response, assessed as delayed-type hypersensitivity reaction to phytohaemagglutinin-P, was better (P < 0.05) in dogs fed cPRO as compared to the CON dogs. There were, however, no variations evident in the antibody response to sheep-erythrocytes among the three groups. It is concluded that the canine-origin L. johnsonii CPN23, in addition to possessing all the in vitro functional attributes of a candidate probiotic, also has the potential to be used as a probiotic in pet nutrition programs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号