首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of the present research was to evaluate the physicochemical characteristics of berberine chloride and to assess the complexation of drug with 2-hydroxypropyl-β-cyclodextrin (HPβCD), a first step towards solution dosage form development. The parameters such as log P value were determined experimentally and compared with predicted values. The pH-dependent aqueous solubility and stability were investigated following standard protocols at 25°C and 37°C. Drug solubility enhancement was attempted utilizing both surfactants and cyclodextrins (CDs), and the drug/CD complexation was studied employing various techniques such as differential scanning calorimetry, Fourier transform infrared, nuclear magnetic resonance, and scanning electron microscopy. The experimental log P value suggested that the compound is fairly hydrophilic. Berberine chloride was found to be very stable up to 6 months at all pH and temperature conditions tested. Aqueous solubility of the drug was temperature dependent and exhibited highest solubility of 4.05 ± 0.09 mM in phosphate buffer (pH 7.0) at 25°C, demonstrating the effect of buffer salts on drug solubility. Decreased drug solubility was observed with increasing concentrations of ionic surfactants such as sodium lauryl sulfate and cetyl trimethyl ammonium bromide. Phase solubility studies demonstrated the formation of berberine chloride–HPβCD inclusion complex with 1:1 stoichiometry, and the aqueous solubility of the drug improved almost 4.5-fold in the presence of 20% HPβCD. The complexation efficiency values indicated that the drug has at least threefold greater affinity for hydroxypropyl-β-CD compared to randomly methylated-β-CD. The characterization techniques confirmed inclusion complex formation between berberine chloride and HPβCD and demonstrated the feasibility of developing an oral solution dosage form of the drug.KEY WORDS: berberine chloride, complexation, cyclodextrin, solubility, surfactants  相似文献   

2.
Controlled-release (CR) tablet formulation of olanzapine was developed using a binary mixture of Methocel® K100 LV-CR and Ethocel® standard 7FP premium by the dry granulation slugging method. Drug release kinetics of CR tablet formulations F1, F2, and F3, each one suitably compressed for 9-, 12-, and 15-kg hardness, were determined in a dissolution media of 0.1 N HCl (pH 1.5) and phosphate buffer (pH 6.8) using type II dissolution apparatus with paddles run at 50 rpm. Ethocel® was found to be distinctly controlling drug release, whereas the hardness of tablets and pH of the dissolution media did not significantly affect release kinetics. The CR test tablets containing 30% Methocel® and 60% Ethocel® (F3) with 12-kg hardness exhibited pH-independent zero-order release kinetics for 24 h. In vivo performance of the CR test tablet and conventional reference tablet were determined in rabbit serum using high-performance liquid chromatography coupled with electrochemical detector. Bioavailability parameters including Cmax, Tmax, and AUC0–48 h of both tablets were compared. The CR test tablets produced optimized Cmax and extended Tmax (P < 0.05). A good correlation of drug absorption in vivo and drug release in vitro (R2 = 0.9082) was observed. Relative bioavailability of the test tablet was calculated as 94%. The manufacturing process employed was reproducible and the CR test tablets were stable for 6 months at 40 ± 2°C/75 ± 5% relative humidity. It was concluded that the CR test tablet formulation successfully developed may improve tolerability and patient adherence by reducing adverse effects.Key words: bioavailability, controlled release, Ethocel®, olanzapine  相似文献   

3.
Controlled-release (CR) matrix tablet of 4 mg risperidone was developed using flow bound dry granulation–slugging method to improve its safety profile and compliance. Model formulations F1, F2, and F3, consisting of distinct blends of Methocel® K100 LV-CR and Ethocel® standard 7FP premium, were slugged. Each batch of granules (250–1,000 μm), obtained by crushing the slugs, was divided into three portions after lubrication and then compressed to 9-, 12-, and 15-kg hard tablets. In vitro drug release studies were carried out in 0.1 N HCl (pH 1.2) and phosphate buffer (pH 6.8) using a paddle dissolution apparatus run at 50 rpm. The CR test tablet, containing 30% Methocel® and 60% Ethocel® (F3) with 12-kg hardness, exhibited pH-independent zero-order release kinetics for 24 h. The drug release rate was inversely proportional to the content of Ethocel®, while the gel layer formed of Methocel® helped in maintaining the integrity of the matrix. Changes in the hardness of tablet did not affect the release kinetics. The tablets were reproducible and stable for 6 months at 40 ± 2°C/75 ± 5% relative humidity. Risperidone and its active metabolite, 9-hydroxyrisperidone, present in the pooled rabbit’s serum, were analyzed with HPLC-UV at λmax 280 nm. The CR test tablet exhibited bioequivalence to reference conventional tablet in addition to the significantly (p < 0.05) optimized peak concentration, Cmax, and extended peak time, Tmax, of the active moiety. There was a good association between drug absorption in vivo and drug release in vitro (R2 = 0.7293). The successfully developed CR test tablet may be used for better therapeutic outcomes of risperidone.KEY WORDS: controlled release, dry granulation slugging method, risperidone  相似文献   

4.

Background

Although converging evidence has suggested that nicotinic acetylcholine receptors (nAChR) play a role in the modulation of GABA release in rat hippocampus, the specific involvement of different nAChR subtypes at presynaptic level is still a matter of debate. In the present work we investigated, using selective α7 and α4β2 nAChR agonists, the presence of different nAChR subtypes on hippocampal GABA nerve endings to assess to what extent and through which mechanisms they stimulate endogenous GABA release.

Methodology/Findings

All agonists elicited GABA overflow. Choline (Ch)-evoked GABA overflow was dependent to external Ca2+, but unaltered in the presence of Cd2+, tetrodotoxin (TTX), dihydro-β-erythroidine (DHβE) and 1-(4,4-Diphenyl-3-butenyl)-3-piperidinecarboxylic acid hydrochloride SKF 89976A. The effect of Ch was blocked by methyllycaconitine (MLA), α-bungarotoxin (α-BTX), dantrolene, thapsigargin and xestospongin C, suggesting that GABA release might be triggered by Ca2+ entry into synaptosomes through the α7 nAChR channel with the involvement of calcium from intracellular stores. Additionally, 5-Iodo-A-85380 dihydrochloride (5IA85380) elicited GABA overflow, which was Ca2+ dependent, blocked by Cd2+, and significantly inhibited by TTX and DHβE, but unaffected by MLA, SKF 89976A, thapsigargin and xestospongin C and dantrolene. These findings confirm the involvement of α4β2 nAChR in 5IA85380-induced GABA release that seems to occur following membrane depolarization and opening calcium channels.

Conclusions/Significance

Rat hippocampal synaptosomes possess both α7 and α4β2 nAChR subtypes, which can modulate GABA release via two distinct mechanisms of action. The finding that GABA release evoked by the mixture of sub-maximal concentration of 5IA85380 plus sub-threshold concentrations of Ch was significantly larger than that elicited by the sum of the effects of the two agonists is compatible with the possibility that they coexist on the same nerve terminals. These findings would provide the basis for possible selective pharmacological strategies to treat neuronal disorders that involve the dysfunction of hippocampal cholinergic system.  相似文献   

5.
Biopolymers are important substrates for heterotrophic bacteria in oligotrophic freshwater environments, but information on bacterial growth kinetics with biopolymers is scarce. The objective of this study was to characterize bacterial biopolymer utilization in these environments by assessing the growth kinetics of Flavobacterium johnsoniae strain A3, which is specialized in utilizing biopolymers at μg liter−1 levels. Growth of strain A3 with amylopectin, xyloglucan, gelatin, maltose, or fructose at 0 to 200 μg C liter−1 in tap water followed Monod or Teissier kinetics, whereas growth with laminarin followed Teissier kinetics. Classification of the specific affinity of strain A3 for the tested substrates resulted in the following affinity order: laminarin (7.9 × 10−2 liter·μg−1 of C·h−1) ≫ maltose > amylopectin ≈ gelatin ≈ xyloglucan > fructose (0.69 × 10−2 liter·μg−1 of C·h−1). No specific affinity could be determined for proline, but it appeared to be high. Extracellular degradation controlled growth with amylopectin, xyloglucan, or gelatin but not with laminarin, which could explain the higher affinity for laminarin. The main degradation products were oligosaccharides or oligopeptides, because only some individual monosaccharides and amino acids promoted growth. A higher yield and a lower ATP cell−1 level was achieved at ≤10 μg C liter−1 than at >10 μg C liter−1 with every substrate except gelatin. The high specific affinities of strain A3 for different biopolymers confirm that some representatives of the classes Cytophagia-Flavobacteria are highly adapted to growth with these compounds at μg liter−1 levels and support the hypothesis that Cytophagia-Flavobacteria play an important role in biopolymer degradation in (ultra)oligotrophic freshwater environments.  相似文献   

6.
Overactivation of ionotropic glutamate receptors in oligodendrocytes induces cytosolic Ca2+ overload and excitotoxic death, a process that contributes to demyelination and multiple sclerosis. Excitotoxic insults cause well-characterized mitochondrial alterations and endoplasmic reticulum (ER) dysfunction, which is not fully understood. In this study, we analyzed the contribution of ER-Ca2+ release through ryanodine receptors (RyRs) and inositol triphosphate receptors (IP3Rs) to excitotoxicity in oligodendrocytes in vitro. First, we observed that oligodendrocytes express all previously characterized RyRs and IP3Rs. Blockade of Ca2+-induced Ca2+ release by TMB-8 following α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor-mediated insults attenuated both oligodendrocyte death and cytosolic Ca2+ overload. In turn, RyR inhibition by ryanodine reduced as well the Ca2+ overload whereas IP3R inhibition was ineffective. Furthermore, AMPA-triggered mitochondrial membrane depolarization, oxidative stress and activation of caspase-3, which in all instances was diminished by RyR inhibition. In addition, we observed that AMPA induced an ER stress response as revealed by α subunit of the eukaryotic initiation factor 2α phosphorylation, overexpression of GRP chaperones and RyR-dependent cleavage of caspase-12. Finally, attenuating ER stress with salubrinal protected oligodendrocytes from AMPA excitotoxicity. Together, these results show that Ca2+ release through RyRs contributes to cytosolic Ca2+ overload, mitochondrial dysfunction, ER stress and cell death following AMPA receptor-mediated excitotoxicity in oligodendrocytes.  相似文献   

7.
In pancreatic β-cells, glutamate dehydrogenase (GDH) modulates insulin secretion, although its function regarding specific secretagogues is unclear. This study investigated the role of GDH using a β-cell–specific GDH knockout mouse model, called βGlud1−/−. The absence of GDH in islets isolated from βGlud1–/– mice resulted in abrogation of insulin release evoked by glutamine combined with 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid or l-leucine. Reintroduction of GDH in βGlud1–/– islets fully restored the secretory response. Regarding glucose stimulation, insulin secretion in islets isolated from βGlud1–/– mice exhibited half of the response measured in control islets. The amplifying pathway, tested at stimulatory glucose concentrations in the presence of KCl and diazoxide, was markedly inhibited in βGlud1–/– islets. On glucose stimulation, net synthesis of glutamate from α-ketoglutarate was impaired in GDH-deficient islets. Accordingly, glucose-induced elevation of glutamate levels observed in control islets was absent in βGlud1–/– islets. Parallel biochemical pathways, namely alanine and aspartate aminotransferases, could not compensate for the lack of GDH. However, the secretory response to glucose was fully restored by the provision of cellular glutamate when βGlud1–/– islets were exposed to dimethyl glutamate. This shows that permissive levels of glutamate are required for the full development of glucose-stimulated insulin secretion and that GDH plays an indispensable role in this process.  相似文献   

8.
The regulated ability of integrin αIIbβ3 to bind fibrinogen plays a crucial role in platelet aggregation, adhesion, and hemostasis. Employing an optical-trap-based electronic force clamp, we studied the thermodynamics and kinetics of αIIbβ3-fibrinogen bond formation and dissociation under constant unbinding forces, mimicking the forces of physiologic blood shear on a thrombus. The distribution of bond lifetimes was bimodal, indicating that the αIIbβ3-fibrinogen complex exists in two bound states with different mechanical stability. The αIIbβ3 antagonist, abciximab, inhibited binding without affecting the unbinding kinetics, whereas Mn2+ biased the αIIbβ3-fibrinogen complex to the strong bound state with reduced off-rate. The average bond lifetimes decreased exponentially with increasing pulling force from ∼5 pN to 50 pN, suggesting that in this force range the αIIbβ3-fibrinogen interactions are classical slip bonds. We found no evidence for catch bonds, which is consistent with the known lack of shear-enhanced platelet adhesion on fibrinogen-coated surfaces. Taken together, these data provide important quantitative and qualitative characteristics of αIIbβ3-fibrinogen binding and unbinding that underlie the dynamics of platelet adhesion and aggregation in blood flow.  相似文献   

9.
Neuroinvasion and subsequent destruction of the central nervous system by prions are typically preceded by a colonization phase in lymphoid organs. An important compartment harboring prions in lymphoid tissue is the follicular dendritic cell (FDC), which requires both tumor necrosis factor receptor 1 (TNFR1) and lymphotoxin β receptor (LTβR) signaling for maintenance. However, prions are still detected in TNFR1−/− lymph nodes despite the absence of mature FDCs. Here we show that TNFR1-independent prion accumulation in lymph nodes depends on LTβR signaling. Loss of LTβR signaling, but not of TNFR1, was concurrent with the dedifferentiation of high endothelial venules (HEVs) required for lymphocyte entry into lymph nodes. Using luminescent conjugated polymers for histochemical PrPSc detection, we identified PrPSc deposits associated with HEVs in TNFR1−/− lymph nodes. Hence, prions may enter lymph nodes by HEVs and accumulate or replicate in the absence of mature FDCs.  相似文献   

10.
In Escherichia coli, the γ complex clamp loader loads the β-sliding clamp onto DNA. The β clamp tethers DNA polymerase III to DNA and enhances the efficiency of replication by increasing the processivity of DNA synthesis. In the presence of ATP, γ complex binds β and DNA to form a ternary complex. Binding to primed template DNA triggers γ complex to hydrolyze ATP and release the clamp onto DNA. Here, we investigated the kinetics of forming a ternary complex by measuring rates of γ complex binding β and DNA. A fluorescence intensity-based β binding assay was developed in which the fluorescence of pyrene covalently attached to β increases when bound by γ complex. Using this assay, an association rate constant of 2.3 × 107 m−1 s−1 for γ complex binding β was determined. The rate of β binding was the same in experiments in which γ complex was preincubated with ATP before adding β or added directly to β and ATP. In contrast, when γ complex is preincubated with ATP, DNA binding is faster than when γ complex is added to DNA and ATP at the same time. Slow DNA binding in the absence of ATP preincubation is the result of a rate-limiting ATP-induced conformational change. Our results strongly suggest that the ATP-induced conformational changes that promote β binding and DNA binding differ. The slow ATP-induced conformational change that precedes DNA binding may provide a kinetic preference for γ complex to bind β before DNA during the clamp loading reaction cycle.  相似文献   

11.

Background

Voltage-dependent K+ channels (Kv) mediate repolarisation of β-cell action potentials, and thereby abrogate insulin secretion. The role of the Kv1.1 K+ channel in this process is however unclear. We tested for presence of Kv1.1 in different species and tested for a functional role of Kv1.1 by assessing pancreatic islet function in BALB/cByJ (wild-type) and megencephaly (mceph/mceph) mice, the latter having a deletion in the Kv1.1 gene.

Methodology/Principal Findings

Kv1.1 expression was detected in islets from wild-type mice, SD rats and humans, and expression of truncated Kv1.1 was detected in mceph/mceph islets. Full-length Kv1.1 protein was present in islets from wild-type mice, but, as expected, not in those from mceph/mceph mice. Kv1.1 expression was localized to the β-cell population and also to α- and δ-cells, with evidence of over-expression of truncated Kv1.1 in mceph/mceph islets. Blood glucose, insulin content, and islet morphology were normal in mceph/mceph mice, but glucose-induced insulin release from batch-incubated islets was (moderately) higher than that from wild-type islets. Reciprocal blocking of Kv1.1 by dendrotoxin-K increased insulin secretion from wild-type but not mceph/mceph islets. Glucose-induced action potential duration, as well as firing frequency, was increased in mceph/mceph mouse β-cells. This duration effect on action potential in β-cells from mceph/mceph mice was mimicked by dendrotoxin-K in β-cells from wild-type mice. Observations concerning the effects of both the mceph mutation, and of dendrotoxin-K, on glucose-induced insulin release were confirmed in pancreatic islets from Kv1.1 null mice.

Conclusion/Significance

Kv1.1 channels are expressed in the β-cells of several species, and these channels can influence glucose-stimulated insulin release.  相似文献   

12.
Two groups of fluconazole mucoadhesive buccal discs were prepared: (a) Fluconazole buccal discs prepared by direct compression containing bioadhesive polymers, namely, Carbopol 974p (Cp), sodium carboxymethyl cellulose (SCMC), or sodium alginate (SALG) in combination with hydroxypropyl methylcellulose (HPMC) or hydroxyethyl cellulose (HEC). (b) Fluconazole buccal discs prepared by freeze drying containing different polymer combinations (SCMC/HPMC, Cp/HPMC, SALG/HPMC, and chitosan/SALG). The prepared discs were evaluated by investigating their release pattern, swelling capacity, mucoadhesion properties, and in vitro adhesion time. In vivo evaluation of the buccal disc and in vivo residence times were also performed. Fluconazole salivary concentration after application of fluconazole buccal systems to four healthy volunteers was determined using microbiological assay and high-performance liquid chromatography. SCMC/HPMC buccal disc prepared by direct compression could be considered comparatively superior mucoadhesive disc regarding its in vitro adhesion time, in vivo residence time, and in vitro/in vivo release rates of the drug. Determination of the amount of drug released in saliva after application of the selected fluconazole disc confirmed the ability of the disc to deliver the drug over a period of approximately 5 h and to reduce side effects and possibility of drug interaction encountered during systemic therapy of fluconazole, which would be beneficial in the case of oral candidiasis.  相似文献   

13.
This study compared the release behavior of single-unit (tablets, capsules) and multiple-unit (minitablets in capsules) controlled-release systems of furosemide. The swelling and erosion behaviors of these systems, which contained the swellable hydrophilic polymers sodium alginate (high viscosity) and Carbopol 974P, were compared. Swelling and erosion experiments showed a high degree of swelling and limited erosion for the Carbopol preparations, whereas less swelling but greater erosion was observed for the sodium alginate preparations. The sodium alginate preparations were eroded in 6 hours, while Carbopol preparations exhibited limited erosion within this period of time. These results appear to be attributed to the physicochemical characteristics of the polymers used in this study. Polymer characteristics greatly influenced the release of furosemide (model drug) from the formulations prepared and tested. Sodium alginate had a less pronounced sustained release effect compared with Carbopol (ie, in 8 hours all 3 sodium alginate dosage forms displayed complete release of furosemide, while only 30% of the drug was released from Carbopol dosage forms). Finally, all 3 Carbopol dosage forms (single- and multiple-unit) displayed similar release behavior while sodium alginate dosage forms displayed a different and more distinctive behavior. Minitablets and tablets showed a greater sustained release effect compared with capsules. Evaluation of the release data indicates that the release mechanism for sodium alginate formulations may be attributed to erosion/dissolution, while for Carbopol it may be attributed mainly to polymer relaxation and diffusion of the drug from the polymer surface.  相似文献   

14.
Tao J  Shi J  Yan L  Chen Y  Duan YH  Ye P  Feng Q  Zhang JW  Shu XQ  Ji YH 《PloS one》2011,6(3):e15896

Background

BK channels are usually activated by membrane depolarization and cytoplasmic Ca2+. Especially,the activity of BK channel (α+β4) can be modulated by martentoxin, a 37 residues peptide, with Ca2+-dependent manner. gBK channel (glioma BK channel) and BK channel (α+β1) possessed higher Ca2+ sensitivity than other known BK channel subtypes.

Methodology and Principal Findings

The present study investigated the modulatory characteristics of martentoxin on these two BK channel subtypes by electrophysiological recordings, cell proliferation and Ca2+ imaging. In the presence of cytoplasmic Ca2+, martentoxin could enhance the activities of both gBK and BK channel (α+β1) subtypes in dose-dependent manner with EC50 of 46.7 nM and 495 nM respectively, while not shift the steady-state activation of these channels. The enhancement ratio of martentoxin on gBK and BK channel (α+β1) was unrelated to the quantitive change of cytoplasmic Ca2+ concentrations though the interaction between martentoxin and BK channel (α+β1) was accelerated under higher cytoplasmic Ca2+. The selective BK pore blocker iberiotoxin could fully abolish the enhancement of these two BK subtypes induced by martentoxin, suggesting that the auxiliary β subunit might contribute to the docking for martentoxin. However, in the absence of cytoplasmic Ca2+, the activity of gBK channel would be surprisingly inhibited by martentoxin while BK channel (α+β1) couldn''t be affected by the toxin.

Conclusions and Significance

Thus, the results shown here provide the novel evidence that martentoxin could increase the two Ca2+-hypersensitive BK channel subtypes activities in a new manner and indicate that β subunit of these BK channels plays a vital role in this enhancement by martentoxin.  相似文献   

15.
A significant plan is executed in the present study to study the effect of double-compression coating on flurbiprofen core mini-tablets to achieve the pulsatile colonic delivery to deliver the drug at a specific time as per the patho-physiological need of the disease that results in improved therapeutic efficacy. In this study, pulsatile double-compression-coated tablets were prepared based on time-controlled hydroxypropyl methylcellulose K100M inner compression coat and pH-sensitive Eudragit S100 outer compression coat. Then, the tablets were evaluated for both physical evaluation and drug-release studies, and to prove these results, in vivo pharmacokinetic studies in human volunteers were conducted. From the in vitro drug-release studies, F6 tablets were considered as the best formulation, which retarded the drug release in the stomach and small intestine (3.42 ± 0.12% in 5 h) and progressively released to the colon (99.78 ± 0.74% in 24 h). The release process followed zero-order release kinetics, and from the stability studies, similarity factor between dissolution data before and after storage was found to be 88.86. From the pharmacokinetic evaluation, core mini-tablets producing peak plasma concentration (Cmax) was 14,677.51 ± 12.16 ng/ml at 3 h Tmax and pulsatile colonic tablets showed Cmax = 12,374.67 ± 16.72 ng/ml at 12 h Tmax. The area under the curve for the mini and pulsatile tablets was 41,238.52 and 72,369.24 ng-h/ml, and the mean resident time was 3.43 and 10.61 h, respectively. In conclusion, development of double-compression-coated tablets is a promising way to achieve the pulsatile colonic release of flurbiprofen.KEY WORDS: core mini-tablets, double-compression coating, inner compression coat, outer compression coat, similarity factor  相似文献   

16.

Background

Phosphoinositide 3-kinases (PI3Ks) regulate numerous physiological processes including some aspects of cardiac function. Although regulation of cardiac contraction by individual PI3K isoforms has been studied, little is known about the cardiac consequences of downregulating multiple PI3Ks concurrently.

Methods and Results

Genetic ablation of both p110α and p110β in cardiac myocytes throughout development or in adult mice caused heart failure and death. Ventricular myocytes from double knockout animals showed transverse tubule (T-tubule) loss and disorganization, misalignment of L-type Ca2+ channels in the T-tubules with ryanodine receptors in the sarcoplasmic reticulum, and reduced Ca2+ transients and contractility. Junctophilin-2, which is thought to tether T-tubules to the sarcoplasmic reticulum, was mislocalized in the double PI3K-null myocytes without a change in expression level.

Conclusions

PI3K p110α and p110β are required to maintain the organized network of T-tubules that is vital for efficient Ca2+-induced Ca2+ release and ventricular contraction. PI3Ks maintain T-tubule organization by regulating junctophilin-2 localization. These results could have important medical implications because several PI3K inhibitors that target both isoforms are being used to treat cancer patients in clinical trials.  相似文献   

17.
The formation of fibrils and oligomers of amyloid beta (Aβ) with 42 amino acid residues (Aβ1–42) is the most important pathophysiological event associated with Alzheimer''s disease (AD). The formation of Aβ fibrils and oligomers requires a conformational change from an α-helix to a β-sheet conformation, which is encouraged by the formation of a salt bridge between Asp 23 or Glu 22 and Lys 28. Recently, Cu2+ and various drugs used for AD treatment, such as galanthamine (Reminyl®), have been reported to inhibit the formation of Aβ fibrils. However, the mechanism of this inhibition remains unclear. Therefore, the aim of this work was to explore how Cu2+ and galanthamine prevent the formation of Aβ1–42 fibrils using molecular dynamics (MD) simulations (20 ns) and in vitro studies using fluorescence and circular dichroism (CD) spectroscopies. The MD simulations revealed that Aβ1–42 acquires a characteristic U-shape before the α-helix to β-sheet conformational change. The formation of a salt bridge between Asp 23 and Lys 28 was also observed beginning at 5 ns. However, the MD simulations of Aβ1−42 in the presence of Cu2+ or galanthamine demonstrated that both ligands prevent the formation of the salt bridge by either binding to Glu 22 and Asp 23 (Cu2+) or to Lys 28 (galanthamine), which prevents Aβ1−42 from adopting the U-characteristic conformation that allows the amino acids to transition to a β-sheet conformation. The docking results revealed that the conformation obtained by the MD simulation of a monomer from the 1Z0Q structure can form similar interactions to those obtained from the 2BGE structure in the oligomers. The in vitro studies demonstrated that Aβ remains in an unfolded conformation when Cu2+ and galanthamine are used. Then, ligands that bind Asp 23 or Glu 22 and Lys 28 could therefore be used to prevent β turn formation and, consequently, the formation of Aβ fibrils.  相似文献   

18.
We examined the effect of the cellular sphingolipid level on the release of arachidonic acid (AA) and activity of cytosolic phospholipase A2α (cPLA2α) using two Chinese hamster ovary (CHO)-K1-derived mutants deficient in sphingolipid synthesis: LY-B cells defective in the LCB1 subunit of serine palmitoyltransferase for de novo synthesis of sphingolipid species, and LY-A cells defective in the ceramide transfer protein CERT for SM synthesis. When LY-B and LY-A cells were cultured in Nutridoma medium and the sphingolipid level was reduced, the release of AA stimulated by the Ca2+ ionophore A23187 increased 2-fold and 1.7-fold, respectively, compared with that from control cells. The enhancement in LY-B cells was decreased by adding sphingosine and treatment with the cPLA2α inhibitor. When CHO cells were treated with an acid sphingomyelinase inhibitor to increase the cellular SM level, the release of AA induced by A23187 or PAF was decreased. In vitro studies were then conducted to test whether SM interacts directly with cPLA2α. Phosphatidylcholine vesicles containing SM reduced cPLA2α activity. Furthermore, SM disturbed the binding of cPLA2α to glycerophospholipids. These results suggest that SM at the biomembrane plays important roles in regulating the cPLA2α-dependent release of AA by inhibiting the binding of cPLA2α to glycerophospholipids.  相似文献   

19.
Upon exposure to adipogenesis-inducing hormones, confluent 3T3-L1 preadipocytes express C/EBPβ (CCAAT/enhancer binding protein β). Early induced C/EBPβ is inactive but, after a lag period, acquires its DNA-binding capability by sequential phosphorylation. During this period, preadipocytes pass the G1/S checkpoint synchronously. Thr188 of C/EBPβ is phosphorylated initially to prime the factor for subsequent phosphorylation at Ser184 or Thr179 by GSK3β, which translocates into the nuclei during the G1/S transition. Many events take place during the G1/S transition, including reduction in p27Kip1 protein levels, retinoblastoma (Rb) phosphorylation, GSK3β nuclear translocation, and C/EBPβ binding to target promoters. During hypoxia, hypoxia-inducible factor-1α (HIF-1α) is stabilized, thus maintaining expression of p27Kip1, which inhibits Rb phosphorylation. Even under normoxic conditions, constitutive expression of p27Kip1 blocks the nuclear translocation of GSK3β and DNA binding capability of C/EBPβ. Hypoxia also blocks nuclear translocation of GSK3β and DNA binding capability of C/EBPβ in HIF-1α knockdown 3T3-L1 cells that fail to induce p27Kip1. Nonetheless, under hypoxia, these cells can block Rb phosphorylation and the G1/S transition. Altogether, these findings suggest that hypoxia prevents the nuclear translocation of GSK3β and the DNA binding capability of C/EBPβ by blocking the G1/S transition through HIF-1α-dependent induction of p27Kip1 and an HIF-1α/p27-independent mechanism.  相似文献   

20.
Reactive oxygen species are known to participate in the regulation of intracellular signaling pathways, including activation of NF-κB. Recent studies have indicated that increases in intracellular concentrations of hydrogen peroxide (H2O2) have anti-inflammatory effects in neutrophils, including inhibition of the degradation of IκBα after TLR4 engagement. In the present experiments, we found that culture of lipopolysaccharide-stimulated neutrophils and HEK 293 cells with H2O2 resulted in diminished ubiquitination of IκBα and decreased SCFβ-TrCP ubiquitin ligase activity. Exposure of neutrophils or HEK 293 cells to H2O2 was associated with reduced binding between phosphorylated IκBα and SCFβ-TrCP but no change in the composition of the SCFβ-TrCP complex. Lipopolysaccharide-induced SCFβ-TrCP ubiquitin ligase activity as well as binding of β-TrCP to phosphorylated IκBα was decreased in the lungs of acatalasemic mice and mice treated with the catalase inhibitor aminotriazole, situations in which intracellular concentrations of H2O2 are increased. Exposure to H2O2 resulted in oxidative modification of cysteine residues in β-TrCP. Cysteine 308 in Blade 1 of the β-TrCP β-propeller region was found to be required for maximal binding between β-TrCP and phosphorylated IκBα. These findings suggest that the anti-inflammatory effects of H2O2 may result from its ability to decrease ubiquitination as well as subsequent degradation of IκBα through inhibiting the association between IκBα and SCFβ-TrCP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号