首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Fouier-transform infrared (FTIR) difference spectra of several His-E7 and Val-E11 mutants of sperm whale carbonmonoxymyoglobin were obtained by photodissociation at cryogenic temperatures. The IR absorption of the CO ligand shows characteristic features for each of the mutants, both in the ligand-bound (A) state and in the photodissociated (B) state. For most of the mutants, a single A substate band is observed, which points to the crucial role of the His-E7 residue in determining the A substrate spectrum of the bound CO in the native structure. The fact that some of the mutants show more than one stretch band of the bound CO indicates that the appearance of multiple A substates is not exclusively connected to the presence of His-E7. In all but one mutant, multiple stretch bands of the CO in the photodissociated state are observed; these B substates are thought to arise from discrete positions and/or orientations of the photodissociated ligand in the heme pocket. The red shifts of the B bands with respect to the free-gas frequency indicate weak binding in the heme pocket. The observation of similar red shifts in microperoxidase (MP-8), where there is no residue on the distal side, suggests that the photodissociated ligand is still associated with the heme iron. Photoselection experiments were performed to determine the orientation of the bound ligand with respect to the heme normal by photolyzing small fractions of the sample with linearly polarized light at 540 nm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The 250 MHz 1H-NMR spectrum of horse carbonic anhydrase I (or B) (carbonate hydro-lyase, EC 4.2.1.1) was measured as a function of pH under various conditions. Eight resonances corresponding to histidine C-2 protons and four resonances corresponding to histidine C-4 protons were identified and assigned to individual histidine residues in the enzyme molecule. Substantial similarities between horse and human carbonic anhydrases I were demonstrated. While the human enzyme has three titratable histidine residues in its active site, the horse enzyme has only two, His-67 in the human enzyme being replaced by Gln in the horse enzyme (Jabusch, J.R., Bray, R.P. and Deutsch, H.F. (1980) J. Biol. Chem. 255, 9196-9204). This substitution has small but significant effects on the behaviour of the other active-site histidines. His-64 and His-200. However, His-64 has an anomalously low pKa value also in horse isoenzyme I, as previously observed in human isoenzyme I (Campbell, I.D., Lindskog, S. and White, A.I. (1974) J. Mol. Biol. 90, 469-489).  相似文献   

4.
Electron spin resonance (ESR) and electron nuclear double resonance (ENDOR) measurements were performed for the cation radicals obtained from the model compounds of α-, β-, γ- and δ-tocopherol (vitamin E) by oxidizing the tocopherol precursors in an AlCl3-CH2Cl2 solution. The proton hyperfine coupling constants g-values were precisely determined. The ENDOR spectra of the cation radicals of α-, β-, γ- and δ-tocopherol models in CH2Cl2 at ?100°C clearly show 10, 6, 6 and 12 different proton hyperfine couplings, respectively. By varying the temperature, the ESR spectra of the α- and δ-tocopherol model cations exhibit line-width alternation phenomena characteristic of the hindered rotation of the OH group. However, neither the β- nor the γ-tocopherol model cation radical ESR spectra show any sign of an alternative line-width effect. These results are interpreted by assuming that the β- and γ-tocopherol model cations are stabilized in the trans and cis conformations, respectively. On tocopherol model cations are stabilized in the trans and cis conformations, respectively. On the other hand, both the α- and δ-tocopherol model cations exist as cis and trans isomers.  相似文献   

5.
A Desbois  M Lutz  R Banerjee 《Biochemistry》1979,18(8):1510-1518
The low-frequency regions (150--700 cm-1) of resonance Raman (RR) spectra of various complexes of oxidized and reduced horse heart myoglobin were examined by use of 441.6-nm excitation. In this frequency range, RR spectra show 10 bands common to all myoglobin derivatives (numbered here for convenience from I to X). Relative intensities of bands IV, V, and X constitute good indicators of the doming state of the heme and, consequently, of the spin state of the iron atom. An additional band is present for several complexes (fluorometmyoglobin, hydroxymetmyoglobin, azidometmyoglobin, and oxymyoglobin). Isotopic substitutions on the exogenous ligands and of the iron atom (56Fe leads to 54Fe) allow us to assign these additional lines to the stretching vibrations of the Fe-sixth ligand bond. Similarly, bands II are assigned to stretching vibrations of the Fe-N-(pyrrole) bonds. An assignment of bands VI to stretching vibrations of the Fe-Nepsilon(proximal histidine) bonds is also proposed. Mechanisms for the resonance enhancement of the main low-frequency bands are discussed on the basis of the excitation profiles and of the dispersion curves for depolarization ratios obtained for fluorometmyoglobin and hydroxymetmyoglobin.  相似文献   

6.
7.
Proton hyperfine resonance assignments for cytochromes c from several species are currently being successfully pursued by several laboratories. These efforts focus mostly on the ferrous forms. In contrast to that work, we have pursued assignments of the proton hyperfine shifted resonances for horse and tuna ferricytochromes c. Our results indicate that assignments are nearly identical in those two proteins. Using the pre-steady state nuclear Overhauser effect, several additional assignments have been made for the tuna protein, whereas for the horse protein, the following protons have been assigned: heme 7, alpha CH2; heme 7, beta CH2; histidine 18, beta CH2 and alpha CH; and the methionine 80, beta CH2.  相似文献   

8.
Carbon monoxide binding to myoglobin was characterized using the photothermal beam deflection method. The volume and enthalpy changes coupled to CO dissociation were found to be 9.3+/-0.8 mL x mol(-1) and 7.4+/-2.8 kcal x mol(-1), respectively. The corresponding values observed for CO rebinding have the same magnitude but opposite sign: Delta V=-8.6+/-0.9 mL x mol(-1) and Delta H=-5.8+/-2.9 kcal x mol(-1). Ligand rebinding occurs as a single conformational step with a rate constant of 5 x 10(5) M(-1) s(-1) and with activation enthalpy of 7.1+/-0.8 kcal x mol(-1) and activation entropy of -22.4+/-2.8 cal x mol(-1) K(-1). Activation parameters for the ligand binding correspond to the activation parameters previously obtained using the transient absorption methods. Hence, at room temperature the CO binding to Mb can be described as a two-state model and the observed volume contraction occurs during CO-Fe bond formation. Comparing these results with CO dissociation reactions, for which two discrete intermediates were characterized, indicates differences in mechanism by which the protein modulates ligand association and dissociation.  相似文献   

9.
Nitrite is an important species in the global nitrogen cycle, and the nitrite reductase enzymes convert nitrite to nitric oxide (NO). Recently, it has been shown that hemoglobin and myoglobin catalyze the reduction of nitrite to NO under hypoxic conditions. We have determined the 1.20 A resolution crystal structure of the nitrite adduct of ferric horse heart myoglobin (hh Mb). The ligand is bound to iron in the nitrito form, and the complex is formulated as MbIII(ONO-). The Fe-ONO bond length is 1.94 A, and the O-N-O angle is 113 degrees . In addition, the nitrite ligand is stabilized by hydrogen bonding with the distal His64 residue. We have also determined the 1.30 A resolution crystal structures of hh MbIINO. When hh MbIINO is prepared from the reaction of metMbIII with nitrite/dithionite, the FeNO angle is 144 degrees with a Fe-NO bond length of 1.87 A. However, when prepared from the reaction of NO with reduced MbII, the FeNO angle is 120 degrees with a Fe-NO bond length of 2.13 A. This difference in FeNO conformations as a function of preparative method is reproducible, and suggests a role of the distal pocket in hh MbIINO in stabilizing local FeNO conformational minima.  相似文献   

10.
We have collected electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectra from the hydrogen peroxide compound of yeast cytochrome c peroxidase, termed ES, employing EPR microwave frequencies of 9.6 and 11.6 GHz. We have measured and analyzed the temperature dependence of the spin-lattice relaxation rate (1/T1) of the paramagnetic center of ES over the temperature range 1.9 to 4 K. In addition, an upper bound to exchange coupling between the ferryl heme and EPR-visible centers of ES has been calculated and expressions for the dipolar interaction between a ferryl heme and a free radical have been derived. These results all confirm that the EPR signal of ES is not associated with an aromatic amino acid radical, and in particular not with a tryptophanyl radical. This conclusion has led us to consider an explanation of the EPR signal in terms of a nucleophilically stabilized methionyl radical.  相似文献   

11.
A number of intact neutral glycosphingolipids (globo, asialoganglio, neolacto, and gala series), gangliosides, and sulfatide were analyzed by proton nuclear magnetic resonance (NMR) using dimethyl-d6 sulfoxide as a solvent at different conditions of measurement. The chemical shifts of amide proton of ceramide, N-acetylhexosamine and sialic acid moieties were positioned with regularity, thus providing their molar composition. The chemical shifts of amide proton in ceramide moiety differed with respect to constituent fatty acids; delta 7.45 to 7.52 ppm at 25 degrees C for the nonhydroxy acids and 7.32 to 7.42 ppm for the hydroxy acids. The chemical shifts of methyl proton in N-acetyl group were distinguished between N-acetylhexosamine and N-acetylneuraminic acid, and those in N-acetylgalactosamine were discriminated between neutral glycolipids and gangliosides. In the presence or absence of D2O in dimethyl sulfoxide at 110 degrees C, the anomeric protons resonated with regularity characteristic of respective monosaccharide linkages, and the anomeric protons of N-acetylgalactosamine in neutral glycolipids and gangliosides were clearly distinguished. The present study thus demonstrates the general applicability of NMR procedure to glycosphingolipids, providing the determination of chemical composition of both the lipophilic and carbohydrate moieties and the structural elucidation.  相似文献   

12.
The monomeric haemoglobin IV from Chironomus thummi thummi (CTT IV) is an allosteric protein characterized by pH-dependent ligand affinities (Bohr-effect). The ligand-linked proton dissociation gives rise to a t r conformational transition. Furthermore, the Bohr-effect is ligand-dependent and decreases in magnitude following the order of ligands, O2 > CO > NO. Although the Bohr-effect for NO is smallest, the electron spin resonance (ESR) spectra of frozen solutions of 15NO-ligated CTT IV measured as higher derivatives at 77 K reflect this pH-dependent conformation change. g Tensor and hyperfine constants coinciding with the principal directions of the g tensor have been evaluated for 57Fe, 15NO, 14NE-imidazole, and 14N-pyrroles.Hyperfine parameters and g values of both conformation states of this haemoglobin, i.e., of the t state at low pH with low ligand affinity and of the r state at high pH with high ligand affinity, are characteristic for a hexacoordinated nitrosyl haem complex. The change in pH leads to a variation of the Fe-N-O bond angle which is larger at high pH (r conformation) than at low pH (t conformation). Furthermore, the spin transfer from NO into iron orbitals is larger at high pH than at low pH. These results are consistent with the assumption that the interaction of proximal imidazole and iron is smaller in the r conformation than in the t conformation.Binding of anionic detergents to nitrosyl CTT IV causes a conversion of the native (t, r) into a denatured (super-r) structure. The latter, on the basis of hyperfine and g values, apparently contains a pentacoordinated nitrosyl haem complex. Because of the extreme displacement of the proximal imidazole in the super-r structure, the Fe-N-O gouping is nearly linear and a large spin transfer from NO into iron orbitals occurs. Removal of anionic detergents from the protein leads to a full reconversion of the super-r into the native conformations.These structure-related changes of hyperfine constants and g tensor further support the assumption that the trans-effect of the proximal imidazole is an important link of allosteric interactions in haemoglobins.  相似文献   

13.
The e.p.r. spectra of reduced 14NO- and 15NO-bound Pseudomonas nitrite reductase have been investigated at pH 5.8 and 8.0 in four buffer systems. At pH 8.0, absorption spectra indicated that only the haem d1 was NO-bound, but, although quantification of the e.p.r. signals in all cases accounted for NO bound the the haem d1 in both subunits of the enzyme, the precise form of the signals varied with buffer and temperature. A rhombic species, with gx = 2.07, gz = 2.01 and gy = 1.96, represented in the low-temperature spectra seen in all the buffers was converted at high temperatures (approx. 200K) into a form showing a reduced anisotropy. Hyperfine splitting on the gz component of this rhombic signal indicated a nitrogen atom trans to NO and it is proposed that histidine provides the endogenous axial ligand for haem d1. At pH 5.8, absorption spectra indicated NO binding to both haems c and d1 and e.p.r. quantifications accounted for NO-bound haems c and d1 in both enzyme subunits. The e.p.r. spectra at pH 5.8 were generally similar to those at pH 8.0 with respect to g-values and hyperfine coupling constants, but were broader with less well defined hyperfine splittings. As at pH 8, rhombic signals present in spectra at low temperatures were converted to less anisotropic forms at high temperatures. The results are discussed in relation to work on model nitrosyl-protohaem complexes [Yoshimura, Ozaki, Shintani & Watanabe (1979) Arch. Biochem, Biophys. 193, 301-313]. No. e.p.r. signal was observed from oxidized NO-bound Pseudomonas nitrite reductase at pH 6.0, over the temperature range 6-100K.  相似文献   

14.
The tyrosyl radicals generated in reactions of ethyl hydrogen peroxide with both native and indomethacin-pretreated prostaglandin H synthase 1 (PGHS-1) were examined by low-temperature electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopies. In the reaction of peroxide with the native enzyme at 0 degrees C, the tyrosyl radical EPR signal underwent a continuous reduction in line width and lost intensity as the incubation time increased, changing from an initial, 35-G wide doublet to a wide singlet of slightly smaller line width and finally to a 25-G narrow singlet. The 25-G narrow singlet produced by self-inactivation was distinctly broader than the 22-G narrow singlet obtained by indomethacin treatment. Analysis of the narrow singlet EPR spectra of self-inactivated and indomethacin-pretreated enzymes suggests that they reflect conformationally distinct tyrosyl radicals. ENDOR spectroscopy allowed more detailed characterization by providing hyperfine couplings for ring and methylene protons. These results establish that the wide doublet and the 22-G narrow singlet EPR signals arise from tyrosyl radicals with different side-chain conformations. The wide-singlet ENDOR spectrum, however, is best accounted for as a mixture of native wide-doublet and self-inactivated 25-G narrow-singlet species, consistent with an earlier EPR study [DeGray et al. (1992) J. Biol. Chem. 267, 23583-23588]. We conclude that a tyrosyl residue other than the catalytically essential Y385 species is most likely responsible for the indomethacin-inhibited, narrow-singlet spectrum. Thus, this inhibitor may function by redirecting radical formation to a catalytically inactive side chain. Either radical migration or conformational relaxation at Y385 produces the 25-G narrow singlet during self-inactivation. Our ENDOR data also indicate that the catalytically active, wide-doublet species is not hydrogen bonded, which may enhance its reactivity toward the fatty-acid substrate bound nearby.  相似文献   

15.
The molecular properties of phospholipases (PLases) A2 I and A2 III from a sea snake, Laticauda semifasciata, have been characterized by gel-filtration, as well as proton NMR, CD, UV absorption, and fluorescence spectroscopic methods. PLase A2 I exists as a monomer in aqueous solution in the presence or in the absence of Ca2+. The dissociation constants of the Ca2+-enzyme complexes have been determined for the two enzymes. The 270-mHz proton NMR spectra of PLases A2 I and A2 III have been measured, and the aromatic proton resonances of His-21 and His-48 in the active site have been assigned. By analyzing the pH dependence of the chemical shifts of the histidine proton resonances, pKa values have been determined for His-21 and His-48 with and without Ca2+. The conformational transitions have been found to take place at low pH or at high temperature (at approximately 65 degrees C). Fluorescence change of PLase A2 I upon addition of substrate analogs suggests that Trp-70 in PLase A2 I is involved in the binding to micellar substrates. The lack of Trp-70 in PLase A2 III is probably related to the low enzymatic activity as compared with that of PLase A2 I.  相似文献   

16.
17.
18.
The distance separating the high-affinity binding sites of actin for a divalent metal ion and nucleotide was evaluated by using high-resolution proton NMR and EPR spectroscopy. Replacement of the Ca2+ or Mg2+ bound to the high-affinity divalent cation site of G-actin by trivalent lanthanide ions such as La3+, EU3+, or Gd3+ results in an increase in the mobility of the bound ATP as observed in the NMR spectra of G-actin monomers. Little difference was observed between the spectra obtained in the presence of the diamagnetic La3+ control and the paramagnetic ions Eu3+ and Gd3+ which respectively shift and broaden the proton resonances of amino acids in the vicinity of the binding site. Analysis of the NMR spectra indicates that the metal and nucleotide binding sites are separated by a distance of at least 16 A. In the past, the metal and ATP have been widely assumed to bind as a complex. Further verification that the two sites on actin are physically separated was obtained by using an ATP analogue with a nitroxide spin-label bound at the 6' position of the purine ring. An estimate of the distance was made between the site containing the ATP analogue and the paramagnetic ion, Mn2+, bound to the cation binding site. These EPR experiments were not affected by the state of polymerization of the actin. The data obtained by using this technique support the conclusion stated above, namely, that the cation and nucleotide sites on either G- or F-actin are well separated.  相似文献   

19.
The interactions of nitric oxide (NO) and organic nitroso compounds with heme proteins are biologically important, and adduct formation between NO-containing compounds and myoglobin (Mb) have served as prototypical systems for studies of these interactions. We have prepared crystals of horse heart (hh) MbNO from nitrosylation of aqua-metMb crystals, and we have determined the crystal structure of hh MbNO at a resolution of 1.9 A. The Fe-N-O angle of 147 degrees in hh MbNO is larger than the corresponding 112 degrees angle previously determined from the crystal structure of sperm whale MbNO (Brucker et al., Proteins 1998;30:352-356) but is similar to the 150 degrees angle determined from a MS XAFS study of a frozen solution of hh MbNO (Rich et al., J Am Chem Soc 1998;120:10827-10836). The Fe-N(O) bond length of 2.0 A (this work) is longer than the 1.75 A distance determined from the XAFS study and suggests distal pocket influences on FeNO geometry. The nitrosyl N atom is located 3.0 A from the imidazole N(epsilon) atom of the distal His64 residue, suggesting electrostatic stabilization of the FeNO moiety by His64. The crystal structure of the nitrosoethane adduct of ferrous hh Mb was determined at a resolution of 1.7 A. The nitroso O atom of the EtNO ligand is located 2.7 A from the imidazole N(epsilon) atom of His64, suggesting a hydrogen bond interaction between these groups. To the best of our knowledge, the crystal structure of hh Mb(EtNO) is the first such determination of a nitrosoalkane adduct of a heme protein.  相似文献   

20.
The ESR spectrum of the bleomycin-Fe(II)NO complex shows rhombic symmetry with a triplet hyperfine interaction in the gz signal, and its ESR parameters have been compared with those of the ferrous-NO complexes of hemoproteins. The substitution of 14NO by 15NO gives the transition from a triplet to a doublet in the gz absorption with a concomitant change in the nitrogen hyperfine constant. The addition of DNA to the ferrous-NO complex of bleomycin induces the greater separation of the gx and gy absorptions in comparison with the original ESR spectrum. The present three-line gz signal for the bleomycin-Fe(II)-NO complex is indicative of weakened fifth axial nitrogen ligand-to-iron bonding with concomitantly stronger NO-to-iron bonding. On the other hand, the ESR feature of the bleomycin-Fe(III) complex is typical of the rhombic low-spin type, and no stable ferric-NO complex of bleomycin is formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号