首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Procollagen I in corneal endothelial cells (CECs) is intracellularly degraded immediately after its synthesis. In this study, we investigated the mechanism of intracellular degradation of procollagen I by determining the role of protein disulfide isomerase (PDI) in endoplasmic reticulum (ER) retention and further determined the degradation pathway of procollagen I in CECs. When association of PDI to monomeric proalpha chains or the trimeric procollagen I carboxyl propeptides (PICPs) was analyzed, immune complex precipitated with anti-PICP antibody contained more PDI than that precipitated with antibodies to monomeric chains. PICPs were completely colocalized with PDI. When CECs were transfected with PDI vector, procollagen I and the recombinant PDI were colocalized in the ER, whereas CECs transfected with PDI minus KDEL (the ER retrieval sequence) vector demonstrated that the two proteins were localized in the Golgi and were subsequently secreted into the medium. Ribostamycin (an inhibitor of the chaperone activity of PDI) blocked colocalization of PDI and procollagen I. Cells treated with chloroquine (lysosome inhibitor) did not alter the subcellular localization of procollagen I, because the inhibitor failed to induce the accumulation of procollagen I at Golgi. On the other hand, procollagen I was colocalized with ubiquitin in the cytoplasm, and proteasomal inhibitors further facilitated the colocalization of the two proteins and accumulation of ubiquitinated procollagen I ladders. These results suggest that association of PDI with procollagen I, whether monomeric or trimeric, leads to ER retention of procollagen I before intracellular degradation via the ubiquitin-proteasome pathway.  相似文献   

2.
Matrix-free cells from chick-embryo sterna were incubated with various concentrations of 2,2'-bipyridyl, an iron chelator that inhibits prolyl hydroxylase and lysyl hydroxylase. At concentrations in the region of 0.1 mM, significant effects on cartilage collagen hydroxylation and secretion were observed. When the underhydroxylated collagens were subsequently digested with chymotrypsin or chymotrypsin plus trypsin at 4 degrees C for 15 min, the minor cartilage collagen precursors (namely types IX and XI) were extensively degraded; type II procollagen was only partially susceptible and was converted into underhydroxylated collagen. The results demonstrate that there were significant differences in triple-helix stability among cartilage collagens such that the underhydroxylated minor collagen precursors were unable to attain a native structure under conditions where type II procollagen was successful.  相似文献   

3.
Prolyl 4-hydroxylase, the key enzyme of collagen synthesis, is an alpha2beta2 tetramer, the beta subunit of which is protein disulfide isomerase (PDI). Coexpression of the human alpha subunit and PDI in Pichia produced trace amounts of an active tetramer. A much higher, although still low, assembly level was obtained using a Saccharomyces pre-pro sequence in PDI. Coexpression with human type III procollagen unexpectedly increased the assembly level 10-fold, with no increase in the total amounts of the subunits. The recombinant enzyme was active not only in Pichia extracts but also inside the yeast cell, indicating that Pichia must have a system for transporting all the cosubstrates needed by the enzyme into the lumen of the endoplasmic reticulum. The 4-hydroxyproline-containing procollagen polypeptide chains were of full length and formed molecules with stable triple helices even though Pichia probably has no Hsp47-like protein. The data indicate that collagen synthesis in Pichia, and probably also in other cells, involves a highly unusual control mechanism, in that production of a stable prolyl 4-hydroxylase requires collagen expression while assembly of a stable collagen requires enzyme expression. This Pichia system seems ideal for the high-level production of various recombinant collagens for numerous scientific and medical purposes.  相似文献   

4.
Rats were administered CCl4, a well-defined nephrotoxin, for 20 weeks to produce glomerular sclerosis. Tubular degeneration and necrosis with interstitial fibrosis was clearly evident by histological examination. Kidneys were homogenized in phosphate-buffered saline and a collagen synthesis-stimulating factor was isolated by Sephadex G-50 gel filtration. The 5 kDa component stimulated both type I and type IV procollagen synthesis by mesangial cells and type I procollagen synthesis by rat skin fibroblasts. In each cell type, 2-6-fold increases in procollagen protein production or cell proliferation was noted. The steady-state levels of mRNA encoding for procollagen alpha 1(I) and procollagen alpha 1(IV) chains in mesangial cells were determined by by hybridization to their corresponding cDNA clones. The type I procollagen mRNA was elevated 1.4-fold compared to a 1.6-fold increase in mRNA encoding for type IV procollagen. The similar properties and chemical characteristics of this fibrogenic factor with a factor from fibrotic liver suggests they are the same and that a common endogenous collagen synthesis stimulator may be present in fibrosing organs, thus providing a driving force for collagen over-production.  相似文献   

5.
Assembly of chick and bovine lens-capsule collagen.   总被引:1,自引:1,他引:0       下载免费PDF全文
Chick-embryo and adult bovine lens-capsular epithelia in organ culture synthesized 4-hydroxy[3H]proline-containing polypeptides when incubated in the presence of [3H]proline. These collagenous polypeptides of apparent Mr 180 000, 175 000 and 160 000 became incorporated with time into aggregates of higher molecular size. The formation of such aggregates was inhibited when the tissues were labelled in the presence of beta-aminopropionitrile, thereby implicating lysine-derived cross-links in aggregate formation. When the tissues were incubated in the presence of tunicamycin, the collagenous polypeptides synthesized exhibited increased electrophoretic mobilities on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The addition to lens-capsule incubation medium of alpha alpha'-bipyridine led to the synthesis of underhydroxylated type IV collagen, also of increased electrophoretic mobility. Extended pulse-chase experiments indicated that such underhydroxylated collagen did not participate in aggregate formation, but was at least as stable as fully hydroxylated non-cross-linked collagen synthesized in the presence of beta-aminopropionitrile. Native type IV collagen, recovered from the culture medium when capsules were incubated with [3H]proline for 24h, was purified by ion-exchange chromatography. Separations conducted on CM-cellulose under denaturing and nondenaturing conditions suggested that the alpha 1(IV) and alpha 2(IV) chains occur in the same heterologous triple helix. Densitometric analyses of appropriate fluorograms indicated that these two polypeptides occur in a 2:1 ratio, suggesting that lens-capsule collagen is synthesized as a triple-helical molecule of composition [alpha 1(IV)]2 alpha 2(IV).  相似文献   

6.
D C John  M E Grant    N J Bulleid 《The EMBO journal》1993,12(4):1587-1595
Prolyl 4-hydroxylase (P4-H) catalyses a vital post-translational modification in the biosynthesis of collagen. The enzyme consists of two distinct polypeptides forming an alpha 2 beta 2 tetramer (alpha = 64 kDa, beta = 60 kDa), the beta-subunit being identical to the multifunctional enzyme protein disulfide isomerase (PDI). By studying the cell-free synthesis of the rat alpha-subunit of P4-H we have shown that the alpha-subunit can be translocated, glycosylated and the signal peptide cleaved by dog pancreatic microsomal membranes to yield both singly and doubly glycosylated forms. When translations were carried out under conditions which prevent disulfide bond formation, the product synthesized formed aggregates which were associated with the immunoglobulin heavy chain binding protein (BiP). Translations carried out under conditions that promote disulfide bond formation yielded a product that was not associated with BiP but formed a complex with the endogenous beta-subunit (PDI). Complex formation was detected by co-precipitation of the newly synthesized alpha-subunit with antibodies raised against PDI, by sucrose gradient centrifugation and by chemical cross-linking. When microsomal vesicles were depleted of PDI, BiP and other soluble endoplasmic reticulum proteins, no complex formation was observed and the alpha-subunit aggregated even under conditions that promote disulfide bond formation. We have therefore demonstrated that the enzyme P4-H can be assembled at synthesis in a cell-free system and that the solubility of the alpha-subunit is dependent upon its association with PDI.  相似文献   

7.
Hosokawa N  Nagata K 《FEBS letters》2000,466(1):19-25
In cells, only properly folded procollagen trimers are secreted from the endoplasmic reticulum (ER), while improperly folded abnormal procollagens are retained within the ER. Ascorbic acid is a co-factor in procollagen hydroxylation, which in turn is required for trimer formation. We examined chaperone proteins which bound to procollagen in the absence of ascorbic acid, a model which mimics the human disease scurvy at the cellular level. We found that both prolyl 4-hydroxylase (P4-H)/protein disulfide isomerase (PDI) and HSP47 bound to procollagen in the absence of ascorbic acid. However, the binding of PDI to procollagen decreased when HSP47 was co-transfected, suggesting that HSP47 and PDI compete for binding to procollagen. These data indicate that P4-H/PDI and HSP47 have cooperative but distinct chaperone functions during procollagen biosynthesis.  相似文献   

8.
Prolyl 4-hydroxylase (EC 1.14.11.2) catalyzes the hydroxylation of -X-Pro-Gly- sequences and plays a central role in the synthesis of all collagens. The [alpha(I)]2beta2 type I enzyme is effectively inhibited by poly(L-proline), whereas the [alpha(II)]2beta2 type II enzyme is not. We report here that the poly(L-proline) and (Pro-Pro-Gly)10 peptide substrate-binding domain of prolyl 4-hydroxylase is distinct from the catalytic domain and consists of approximately 100 amino acids. Peptides of 10-19 kDa beginning around residue 140 in the 517 residue alpha(I) subunit remained bound to poly(L-proline) agarose after limited proteolysis of the human type I enzyme tetramer. A recombinant polypeptide corresponding to the alpha(I) subunit residues 138-244 and expressed in Escherichia coli was soluble, became effectively bound to poly(L-proline) agarose and could be eluted with (Pro-Pro-Gly)10. This polypeptide is distinct from the SH3 and WW domains, and from profilin, and thus represents a new type of proline-rich peptide-binding module. Studies with enzyme tetramers containing mutated alpha subunits demonstrated that the presence of a glutamate and a glutamine in the alpha(II) subunit in the positions corresponding to Ile182 and Tyr233 in the alpha(I) subunit explains most of the lack of poly(L-proline) binding of the type II prolyl 4-hydroxylase. Keywords: collagen/dioxygenases/peptide-binding domain/ proline-rich/prolyl hydroxylase  相似文献   

9.
To study the role of (pro)collagen synthesis in the differentiation of rat L6 skeletal myoblasts, a specific inhibitor of collagen synthesis, ethyl-3,4-dihydroxybenzoate (DHB), was utilized. It is shown that DHB reversibly inhibits both morphological and biochemical differentiation of myoblasts, if it is added to the culture medium before the cell alignment stage. The inhibition is alleviated partially by ascorbate, which along with alpha-ketoglutarate serves as cofactor for the enzyme, prolyl hydroxylase. DHB drastically decreases the secretion of procollagen despite an increase in the levels of the mRNA for pro alpha 1(I) and pro alpha 2(I) chains. Probably, the procollagen chains produced in the presence of DHB, being underhydroxylated, are unable to fold into triple helices and are consequently degraded in situ. Along with the inhibition of procollagen synthesis, DHB also decreases markedly the production of a collagen-binding glycoprotein (gp46) present in the ER. The results suggest that procollagen production and/or processing is needed as an early event in the differentiation pathway of myoblasts.  相似文献   

10.
Electron immunohistochemical studies demonstrate that cultured embryo-derived parietal yolk sac (ED-PYS) carcinoma cells synthesize type IV collagen. This material has been isolated and characterized. The collagen obtained after limited pepsin digestion from the medium in which the cells are grown is composed of homogeneous components with a molecular mass of approximately 95 000 daltons. When chromatographed on (carboxymethyl)cellulose under denaturing conditions, the chains elute as acidic components slightly before the human alpha 1(I) chain and coincident with the position of elution of the pepsin-derived human alpha 1(IV) chain. This analysis indicates the presence of a single type of collagen chain in the pepsin-derived ED-PYS synthesized material. In addition, the profile of cyanogen bromide (CNBr) cleavage products obtained from the pepsin-derived ED-PYS cell collagen chains is essentially identical with that derived from the human alpha 1(IV) chain. Isolation of the medium collagen in the absence of pepsin digestion reveals the presence of two high molecular weight components equivalent in size to procollagen alpha chains. However, both high molecular weight products yield CNBr cleavage products that correspond to those obtained from the pepsin-derived alpha 1(IV) chain. The ED-PYS cell-associated collagens obtained with or without the use of pepsin contain components that are essentially identical with those isolated from the culture-medium collagen. These data provide definitive evidence for the existence of type IV collagen molecules composed solely of alpha 1(IV) procollagen chains and further document the usefulness of ED-PYS cells for investigating the biosynthesis of basement membrane components.  相似文献   

11.
12.
Collagen prolyl 4-hydroxylases (C-P4Hs) catalyze the formation of the 4-hydroxyproline residues that are essential for the generation of triple helical collagen molecules. The vertebrate C-P4Hs I, II, and III are [alpha(I)]2beta2, [alpha(II)]2beta2, and [alpha(III)]2beta2 tetramers with identical beta subunits. We generated mice with targeted inactivation of the P4ha1 gene encoding the catalytic alpha subunit of C-P4H I to analyze its specific functions. The null mice died after E10.5, showing an overall developmental delay and a dilated endoplasmic reticulum in their cells. The capillary walls were frequently ruptured, but the capillary density remained unchanged. The C-P4H activity level in the null embryos and fibroblasts cultured from them was 20% of that in the wild type, being evidently due to the other two isoenzymes. Collagen IV immunofluorescence was almost absent in the basement membranes of the null embryos, and electron microscopy revealed disrupted basement membranes, while immunoelectron microscopy showed a lack of collagen IV in them. The amount of soluble collagen IV was increased in the null embryos and cultured null fibroblasts, indicating a lack of assembly of collagen IV molecules into insoluble structures, probably due to their underhydroxylation and hence abnormal conformation. In contrast, the null embryos had collagen I and III fibrils with a typical cross-striation pattern but slightly increased diameters, and the null fibroblasts secreted fibril-forming collagens, although less efficiently than wild-type cells. The primary cause of death of the null embryos was thus most likely an abnormal assembly of collagen IV.  相似文献   

13.
Fetal epithelioid cells, isolated from human amniotic fluid, synthesize and secrete a type IV-like procollagen characterized by a unique pattern of cyanogen bromide (CNBr)-produced peptides. The procollagen is disulfide-bonded and, after reduction, migrates on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a doublet between collagen beta components and pro-alpha 1(I) chains. No conversion of the procollagen to collagen or to procollagen intermediates is observed in cell culture. The procollagen was purified by salt fractionation and ion exchange chromatography; its amino acid composition resembles that of collagenous proteins extracted from basement membranes, with a high 3- and 4-hydroxyproline and hydroxylysine content and low levels of alanine and arginine. The major products obtained after limited proteolytic digestion of the protein retain interchain disulfide bonds and, after reduction, migrate on sodium dodecyl sulfate-polyacrylamide gel electrophoresis near intact pro-alpha 1(I) chains. The procollagen is secreted efficiently by amniotic fluid cells despite almost complete inhibition of peptidyl hydroxylation but, unlike type I procollagen, the secreted underhydroxylated chains lack interchain disulfide bonds. Since these cells also secrete fibronectin and elaborate an extensive extracellular matrix, the system should prove useful in the study of cell-matrix interactions.  相似文献   

14.
Syrian hamster embryo fibroblasts transformed by 4-nitroquinoline-1-oxide (NQT-SHE cells) failed to synthesize the pro-alpha 1(I) subunit of type I procollagen but continued to synthesize altered forms of the other subunit, pro-alpha 2(I) (Peterkofsky, B., and Prather, W. (1986) J. Biol. Chem. 261, 16818-16826). This was unusual, since synthesis of the two subunits generally is coordinately regulated. Present experiments using cell-free translation and hybridization of RNA from normal and transformed Syrian hamster fibroblasts with labeled pro-alpha 1(I) DNA probes show that mRNA for pro-alpha 1(I) is absent from the transformant. In contrast, dot-blot and Southern blot hybridizations of cellular DNAs with pro-alpha 1(I) DNA probes demonstrated that the transformed cells contained pro-alpha 1(I) gene sequences and that the gross structure of the gene was unchanged by transformation. mRNA for the other type I procollagen subunit, pro-alpha 2(I), was present in transformed cells and the major collagenous polypeptide translated from this RNA migrated like the normal pro-alpha 2 subunit during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The translated procollagen chain was cleaved to an alpha 2(I)-sized collagen chain by pepsin at 4 degrees C. These studies provide a molecular basis for the observed collagen phenotype of NQT-SHE cells.  相似文献   

15.
The collagen phenotype of a 4-nitroquinoline-1-oxide-transformed line of Syrian hamster embryo fibroblasts, NQT-SHE, was markedly altered from that of normal Syrian hamster embryo cells, which synthesized mainly type I procollagen [pro-alpha 1(I)]2 pro-alpha 2(I). Total collagen synthesis in the transformant was reduced to about 30% of the control level primarily because synthesis of the pro-alpha 1(I) subunit was completely suppressed. The major collagenous products synthesized consisted of two polypeptides, designated as N-33 and N-50, which could be completely separated by precipitation with ammonium sulfate at 33 and 50% saturation, respectively. N-33 migrated similarly to pro-alpha 2(I) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and N-50 migrated slightly more slowly. The collagenous regions of these chains were more sensitive to protease than the analogous region of procollagen I, but alpha-chains could be obtained by digestion for 2 h at 4 degrees C with high ratios of protein:pepsin. Staphylococcus V8 protease and cyanogen bromide peptide maps of N-33 alpha and N-50 alpha chains indicated that the chains were homologous with, but different than, alpha 2(I) chains and that they differed from each other. Considering their similarity to pro-alpha 2(I), it was surprising to find that the N-collagens were secreted to the same extent as was type I procollagen from Syrian hamster embryo cells and that there were no disulfide bonds between N-collagen chains. Intrachain disulfides were present. One possible explanation for the unusual collagen phenotype of NQT-SHE cells is that transformation induced one or more mutations in the pro-alpha 2(I) structural gene while suppression of synthesis of the pro-alpha 1(I) subunit may be due to a mutation in the regulatory region of its gene or in a general regulatory gene.  相似文献   

16.
Hypoxic modulation of collagen metabolism appears to be related to pathogenesis of many diseases such as fibrosis of connective tissue after injury and scleroderma. Since most of our understanding of how procollagen assembles within the cell has come from studies on cells cultured under normoxia, it may not be helpful for the etiology of the diseases observed in peripheral tissues under hypoxic conditions. As an experimental model for the hypoxic modulation of collagen metabolism, we cultured 3T3-L1 fibroblasts under low partial oxygen pressure and found that hypoxia enhances secretion of type IV collagen 10-fold and accelerates adipose conversion of the cells. The enhanced secretion of type IV collagen was not accompanied by an appreciable increase of alpha1(IV) and alpha2(IV) mRNAs. Prolyl 4-hydroxylase alpha increased only 3-fold under hypoxia. We suggest that hypoxia creates an environment of prolyl 4-hydroxylase alpha(2)beta(2) tetramers favorable for the folding of type IV procollagen which has many interruptions of the Gly-Xaa-Yaa repeat.  相似文献   

17.
Carbon tetrachloride-induced liver damage is a well-characterized experimental model for studying liver fibrosis. We used this model to examine alpha 1(I), alpha 1(III), and alpha 1(IV) procollagen mRNA levels during the development of liver fibrosis. Rats were given 0.5 ml of carbon tetrachloride/kg of body weight for 1-6 weeks. The liver tissue was assayed for collagen content by measuring total hydroxyproline content. Specific increases in procollagen mRNAs were assayed by slot blot hybridization. There was a significant increase in hydroxyproline content of liver tissue following 3 weeks of carbon tetrachloride treatment. The increase in tissue collagen content correlated with an increase in alpha 1(I) procollagen mRNA levels. At 5 and 6 weeks of treatment, there was an increase in alpha 1(III) procollagen mRNA levels. alpha 1(IV) procollagen levels increased slightly with five injections of carbon tetrachloride treatment. These results suggest that specific increases in procollagen mRNAs in liver fibrosis parallel, but do not precede, increases in tissue collagen content.  相似文献   

18.
Fibroblasts from two lethal variants of osteogenesis imperfecta were shown to synthesize increased amounts of type IV procollagen. Previous studies established that one of these variants had a non-functional allele for the pro alpha 2 chain of type I procollagen, whereas the other pro alpha 2(I) allele contained a mutation leading to synthesis of shortened pro alpha 2(I) chains. In the two variants, the relative level of mRNA for pro alpha 1(IV) was 31 and 42% of the level of mRNA for pro alpha 1(I) chains. A value of less than 2% was found for a third lethal and four non-lethal variants of osteogenesis imperfecta. Immunofluorescent staining of fibroblasts from the two variants synthesizing increased amounts of type IV procollagen indicated that a homogeneous population of cells synthesized both type IV and type I procollagen. The results suggest that mutations in the type I procollagen genes that result in osteogenesis imperfecta can be associated with increased expression of the genes for type IV procollagen.  相似文献   

19.
Prolyl 4-hydroxylases, the key enzymes of collagen biosynthesis.   总被引:12,自引:0,他引:12  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号