首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The epithelial lining of the respiratory tract of urodeles has been shown to harbor an innervated system of neuroepithelial endocrine (NEE) cells. Even between phylogenetically closely related species, large differences have been reported in the appearance and chemical coding of the NEE system. Although urodeles are well suited for the purpose, none of the prior studies have provided an immunocytochemical survey of the NEE system in all parts of the respiratory tract. In the present study, many bioactive substances and a general marker were immunocytochemically demonstrated in serial sections of the entire respiratory tract of the Tokyo salamander, Hynobius nebulosus tokyoensis, a species in which neuroepithelial bodies (NEBs) were previously characterized at the electron microscopic level. In the current study, serotonin-immunoreactive solitary NEE cells were observed in variable numbers in the larynx, in all parts of the trachea, and in areas of the lungs covered with ciliomucous epithelium. Serotonin-containing NEBs, however, were detected in small cranial areas of the lung only. Solitary NEE cells were seen in the trachea and lungs of H. nebulosus tokyoensis by immunocytochemical staining for somatostatin, calcitonin, calcitonin gene-related peptide, and bombesin, but the number, localization, and appearance of the labeled NEE cells differed considerably. Only calcitonin-like immunoreactivity was also noted in some NEB-like cell clusters in the cranial parts of the lungs. Unlike many other vertebrates, neuron specific enolase was found to be a poor marker for the NEE system in the salamander species used in this investigation. It may be concluded that the NEE system of H. nebulosus tokyoensis contains at least five different bioactive substances. The different markers, however, demonstrate the presence of NEE cells with obvious differences in respect to appearance and topographical distribution. The necessity is emphasized of reliable methods for adequate sampling of all regions of the respiratory tract in comparative histological studies of the NEE system.  相似文献   

2.
Summary The coexistence of serotonin and calcitonin gene-related peptide (CGRP) in neuroepithelial bodies of the bandicoot, Isoodon macrourus, has been examined using immunocytochemistry at the light- and electronmicroscope levels. The avidin-biotin technique of antigen localisation was used initially to identify serotonin-like and CGRP-like immunoreactivity (-LI). Serotonin-LI and CGRP-LI were found in neuroepithelial cells in the lungs of 30-day-old bandicoots. CGRP-LI could also be demonstrated in nerve fibres associated with some neuroepithelial bodies. The protein A-gold technique of antigen localisation was used to label neuroepithelial cells and nerve fibres at the subcellular level. Serotonin-LI and CGRP-LI were observed in the same dense-cored vesicles of most neuroepithelial cells; however, some neuroepithelial cells were shown to possess serotonin-LI without CGRP-LI. Nerve fibres immediately adjacent to neuroepithelial bodies exhibited mainly CGRP-LI. These results show that serotonin-LI and CGRP-LI are present in neuroepithelial cells of the bandicoot in the same secretory vesicles. This pattern of co-localisation may reflect co-ordinated or synergistic actions of these two neuroactive substances.  相似文献   

3.
4.
Summary Immunoreactivity for calcitonin gene-related peptide is demonstrated for the first time in neuroepithelial bodies in the lung of newborn cats after Bouin fixation and embedding in paraffin. The intense staining clearly identifies these bodies at the level of bronchioli and alveoli. Occasionally, single neuroepithelial endocrine cells, displaying immunoreactivity for calcitonin gene-related peptide are observed. In the kitten lung, identification and localization of neuroepithelial bodies after immunocytochemical staining for calcitonin gene-related peptide are superior to the analysis based on other techniques, i.e., the argyrophilic reaction, periodic acid Schiff-lead hematoxylin method, and immunocytochemical staining for serotonin. The serial-section technique revealed that in neuroepithelial bodies of the newborn kitten lung, immunoreactivity for calcitonin gene-related peptide coexists with immunoreactivity for serotonin in individual cells. The functional significance of the calcitonin gene-related peptide in neuroepithelial bodies remains to be elucidated.  相似文献   

5.
A close topographical association between neuroepithelial bodies and immune cells is occasionally observed in the lungs of various neonatal mammalian species. The immune cells concerned are mast cells and neutrophil or eosinophil granulocytes. In the lungs of newborn puppies having undergone left lung autotransplantation, mast cells are particularly numerous in the airway mucosa of both right and left lungs and their association with neuroepithelial bodies is highly significant. Several of the substances known to be synthesized by the neuroepithelial bodies have a chemoattractive effect on immune cells. Thus, our observations indicate that intrapulmonary neuroepithelial bodies contribute to the local immune response.This investigation was supported by a grant from the Fonds voor Geneeskundig Wetenschappelijk Onderzoek (FGWO-NFWO), Belgium  相似文献   

6.
Richards AM  Charles C 《Peptides》2004,25(10):1795-1802
Urotensin II is a peptide present, together with its receptor, in the central nervous system and many peripheral tissues (including heart, blood vessels, kidneys and endocrine organs) of many species. The bioactive, mature form contains a cyclic heptapeptide perfectly preserved across species spanning 550 million years of evolution Its biological activity has been explored in cultured cells, in isolated vessels from several species, in the isolated perfused heart and in intact animals and man. Initial demonstration of potent vasoconstriction and cardiac depression by the human isoform in non-human primates has been followed by a series of reports indicating potent but highly variable and generally modest vascular responses dependent on species and vascular region. In man short term cardiovascular responses to administered urotensin II are small or absent. The place of urotensin II in the chronic trophic responses to cardiac and vascular injury and its possible roles as a neurotransmitter and/or regulator of renal and endocrine function remain largely unexplored.  相似文献   

7.
 We have examined the distribution of calcium-binding proteins (CaBPs) in adult and fetal lungs of Syrian golden hamsters (Mesocricetus auratus) using immunostaining with confocal laser microscopy and electron microscopy. Single and grouped (neuroepithelial body; NEB) endocrine cells were distributed from bronchi to alveolar ducts in the adult lung. Serial frozen sections immunostained for CaBPs in combination with immunostaining for endocrine markers such as calcitonin gene-related peptide, serotonin, PGP9.5, and synaptophysin revealed that positive immunostaining for calbindin-D28K (CB-D28K) was seen in single endocrine cells and NEBs. However, other so-called EF-hand family CaBPs, parvalbumin and calretinin, were not detected. Electron microscopically, positive immunoreaction for CB-D28K was mainly in the organelle-free cytoplasmic matrix of endocrine cells, and partly in nuclei and associated with secretory granules and endoplasmic reticulum. In fetal developing lungs, endocrine cells appeared first on gestational day 13, and they were positive for all the endocrine markers used. However, pulmonary endocrine cells were positively immunostained for CB-D28K from gestational days 15 and 16 onward. In summary, our observations suggest that CB-D28K is a useful marker for endocrine cells of the lung, and CB-D28K could function as a mediator of endocrine stimulation or calcium homeostasis in pulmonary endocrine cells. Accepted: 17 June 1997  相似文献   

8.
Summary The epithelium of the airways is rich in endocrine cells containing serotonin and/or a wide variety of regulatory peptides. These cells usually occur in clusters in the lungs but are also found scattered in the larynx and trachea. In the present study, endocrine cells in the airways of mouse, rat, hamster, guinea pig, pig, sheep and squirrel monkey were examined for the presence of serotonin, helodermin-like peptides and other regulatory peptides using immunocytochemistry and radioimmunoassay. In addition, we looked for the protein gene product 9.5 (PGP), which occurs in many peptide hormone-producing endocrine cells in the body. Both clustered and scattered endocrine cells in the airways were found to display coexistence of serotonin and peptides, such as a helodermin-like peptide, calcitonin and calcitonin gene-related peptide (CGRP). The PGP-immunoreactive cells were numerous and included elements containing serotonin and/or regulatory peptides. An additional PGP-immunoreactive endocrine cell population lacked serotonin and regulatory peptides. Helodermin-immunoreactive material was demonstrated in endocrine cells of the airways in the mouse and hamster but not in any of the other species studied. Serotonin was an endocrine cell constituent in all the species studied. Calcitonin and CGRP could be demonstrated by immunocytochemistry in the mouse, rat, and hamster, but not in the guinea pig, sheep, pig and monkey. In the hamster airways double immunostaining indicated that the helodermin-like peptide occurred in a subpopulation of the CGRP- and serotonin-containing cells. Most of the CGRP-containing cells stored serotonin; some of them also contained calcitonin. The chemical coding of these cells resembled that of the thyroid C cells.  相似文献   

9.
Peptidyl-glycine alpha-amidating monooxygenase (PAM; EC 1.14.17.3) is an enzyme that catalyzes conversion of glycine-extended peptides to alpha-amidated bioactive peptides. Two peptides that are processed at their carboxyl-termini by this enzyme are neuropeptide Y and anglerfish peptide Y, both of which possess a C-terminal glycine that is used as a substrate for amidation. Results from previous reports have demonstrated that neuropeptide Y-like and anglerfish peptide Y-like immunoreactivities are present in the brain of anglerfish (Lophius americanus). Furthermore, neuropeptide Y-like peptides, namely anglerfish peptide Y and anglerfish peptide YG (the homologues of pancreatic polypeptide) are present in the islet organ of this species. Neuropeptide Y has also been localized in the anterior, intermediated and posterior lobes of the pituitary gland in a variety of species. In order to learn more about the distribution of the enzyme responsible for alpha amidation of these peptides in the brain and pituitary and to specifically investigate the relationship of this enzyme to peptide synthesizing endocrine cells of the anglerfish islet, we performed an immunohistochemical study using several antisera generated against different peptide sequences of the enzyme. PAM antisera labeled cells in the islet organ, pituitary and brain, and fibers in the brain and pituitary gland. The PAM staining pattern in the brain was remarkably similar to the distribution of neuropeptide Y immunoreactivity reported previously. Clusters of cells adjacent to vessels in the anterior pituitary displayed punctate PAM immunoreactivity while varicose fibers were observed in the pituitary stalk and neurohypophysis. Endocrine cells of the islet organ were differentially labeled with different PAM antisera. Comparison of the staining patterns of insulin, glucagon, and anglerfish peptide Y in the islet organ to PAM immunoreactivity suggests a distribution of forms of PAM enzyme in insulin and anglerfish peptide Y-containing cells, but no overlap with glucagon-producing cells. The results also indicate that PAM immunoreactivity is widely distributed in the brain, pituitary and islet organ of anglerfish in cells that contain peptides that require presence of a C-terminal glycine for amidation.  相似文献   

10.
The proventriculus constitutes the glandular region of the chicken stomach. This organ is innervated by two parasympathetic networks, the myenteric and submucous plexus, and here we present a systematic study of this system by immunohistochemistry and electron microscopy. All the neurons and fibres were positive for the neural markers, protein gene product 9.5 and the amidating enzymes. Immunoreactivities for the constitutive neuronal isoform of the enzyme nitric oxide synthase and the vasoactive intestinal peptide were present in neuronal bodies suggesting an intrinsic origin for the similarly immunoreactive fibres found in the proventriculus. On the other hand, immunoreactivity to gastric inhibitory peptide was only found in varicose fibres making contact with the blood vessels and the glandular epithelium, but never in the neuronal somas, suggesting that this substance may be provided by an extrinsic nervous system whose neuronal bodies are located elsewhere. Electron microscopy revealed frequent neuromuscular and neuroepithelial connections in the muscle layers, the wall of the blood vessels and the epithelium. In addition, synapsis-like structures were identified in the proximity of cells belonging to the diffuse endocrine system, providing a new example of neuroendocrine contacts. No positivity was found for antibodies against other neural substances including somatostatin, peptide histidine–isoleucine, peptide tyrosine–tyrosine, neuropeptide tyrosine, bombesin, met-enkephalin, serotonin, substance P, galanin, calcitonin gene-related peptide and S-100 protein.  相似文献   

11.
The colocalization of regulatory peptide immunoreactivities in endocrine cells of the chicken proventriculus at hatching has been investigated using the avidin–biotin technique in serial sections and double immunofluorescence in the same section for light microscopy, and double immunogold staining for electron microscopy. In addition to the eight immunoreactivities previously described in this organ, cells immunoreactive for peptide histidine isoleucine (PHI), peptide gene product 9.5 (PGP), and the amidating enzyme, peptidylglycine -amidating monooxygenase (PAM) were observed. All the cells immunoreactive to glucagon were also immunostained by the PHI antiserum. In addition, all the glucagon-like peptide 1, avian pancreatic polypeptide, and some of the neurotensin-like cells costored also glucagon- and PHI-immunoreactive substances. PGP- and PAM-immunoreactivities were also found in the glucagon-positive cells. A small proportion of the somatostatin-containing cells were positive for PHI but not for other regulatory peptides. These results could suggest either the existence of a very complex regulatory system or that the endocrine system of the newborn chickens is not yet fully developed.  相似文献   

12.
Summary The presence of bioactive peptides in the gut and their possible electrophysiological effects on the intestinal epithelium were studied in two teleost species, the tilapia (Oreochromis mossambicus) and the goldfish (Carassius auratus). Vasoactive intestinal polypeptide-like immunoreactive nerve fibres were found beneath the intestinal epithelium of both species. Galanin-, metenkephalin-and calcitonin gene-related peptide-like immunoreactive nerve fibres were found exclusively in the mucosa of the tilapia. Both species had vasoactive intestinal polypeptide-, enkephalin- or neuropeptide Y-like immunoreactive endocrine cells; calcitonin gene-related peptide-like immunoreactive endocrine cells were additionally found in the tilapia. Somatostatin- and dopamine--hydroxylase-like immunoreactivities were not observed. Nerve cell bodies in the myenteric plexus of both species showed immunoreactivity for calcitonin gene-related peptide-, vasoactive intestinal polypeptide-, and galanin-like peptide. Enkephalin-like immunoreactive nerve cell bodies were present in the tilapia only. None of the peptides had a pronounced electrogenic effect. However, calcitonin gene-related peptide added to stripped intestinal epithelium of the tilapia, reduced the ion selectivity, and addition of galanin increased the ion selectivity. In goldfish intestine, both galanin and calcitonin gene-related peptide were without effect. Enkephalin counteracted the serotonin-induced reduction of the ion selectivity of the goldfish intestinal epithelium, but had no effect on the tilapia epithelium. In both species, vasoactive intestinal polypeptide reduced the ion selectivity of the intestinal epithelium, and neuropeptide Y induced an increase of the ion selectivity. Somatostatin showed no effect on the epithelial ion selectivity of either species. Tetrodotoxin did not inhibit the effects of the peptides studied. The changes in ion selectivity suggest that the enterocytes may be under the regulatory control of these peptides.  相似文献   

13.
The neuroendocrine cell population of the lung of Rana temporaria has been studied by means of immunocytochemistry. Serotonin (5HT)- and polypeptide 7B2-immunoreactive neuroepithelial bodies have been observed in the epithelial lining of the lung. 5HT- but not 7B2-immunoreactive isolated endocrine cells have also been observed.  相似文献   

14.
The distribution of vasoactive intestinal polypeptide (VIP) immunoreactive nerves and endocrine cells in the gastrointestinal tract and pancreas of a number of mammalian and submammalian species has been examined in order to throw light on the exact localization of this peptide. Seven out of 8 VIP antisera demonstrated numerous nerve fibers in the gut, whereas one antiserum (TR2) revealed only scattered, few nerve fibers. The distribution of endocrine cells demonstrated by the different VIP antisera varied considerably. Thus, some antisera demonstrated only endocrine cells in the feline antrum, others only colonic endocrine cells and still others only endocrine cells of the upper gut and pancreas. The variability in staining pattern of endocrine cells as well as recent radioimmunological data makes it opportune to suggest that true VIP is a neuronal peptide and that endocrine cells store peptides resembling, but not being identical with, VIP (VIPoids).  相似文献   

15.
Calcitonin (CT) and calcitonin gene-related peptide (CGRP) are generated by alternate RNA processing from alpha and beta CT/CGRP genes. In this report, an immunocytochemical investigation was undertaken on the occurrence and distribution of immunoreactive CT as well as its colocalization with CGRP in newborn cat bronchopulmonary endocrine cells. A widespread distribution of solitary endocrine cells and neuroepithelial bodies immunostained for CT was recorded within the lung. In all animals studied, CT immunoreactivity represents a subpopulation of CGRP positive cells, while the intrapulmonary nerve fibers contain only CGRP. To the best of our knowledge, this is the first time that CT and its colocalization with CGRP have been demonstrated immunocytochemically in the cat lung. Our results indicate, that different molecular processing of both CT/CGRP genes may be represented by different patterns in the cellular immunoreactivity of the synthetized peptides.  相似文献   

16.
An overlapping distribution of catecholamine-containing cells and proenkephaline-A derived peptide-containing neurons have been identified in the rat medulla oblongata. However, it is not evident whether the coexistence of these bioactive substances occurs in the same neurons or not. Therefore, we examined the coexistence of catecholamine and methionine-enkephalin-Arg6-Gly7-Leu8 (MEAGL), a proenkephaline-A derived peptide, using a combination of histofluorescence and peroxidase-anti-peroxidase (PAP) immunohistochemical (modified formaldehyde-glutalaldehyde (Faglu)) methods on the same tissue sections. We found one third of A1/C1 catecholamine fluorescent cells show MEAGL-like immunoreactivity.  相似文献   

17.
Neurons and endocrine cells have the regulated secretory pathway (RSP) in which precursor proteins undergo proteolytic processing by prohormone convertase (PC) 1/3 or 2 to generate bioactive peptides. Although motifs for PC-mediated processing have been described ((R/K)Xn(R/K) where n = 0, 2, 4, or 6), actual processing sites cannot be predicted from amino acid sequences alone. We hypothesized that discovery of bioactive peptides would be facilitated by experimentally identifying signal peptide cleavage sites and processing sites. However, in vivo and in vitro peptide degradation, which is widely recognized in peptidomics, often hampers processing site determination. To obtain sequence information about peptides generated in the RSP on a large scale, we applied a brief exocytotic stimulus (2 min) to cultured endocrine cells and analyzed peptides released into supernatant using LC-MSMS. Of note, 387 of the 400 identified peptides arose from 19 precursor proteins known to be processed in the RSP, including nine peptide hormone and neuropeptide precursors, seven granin-like proteins, and three processing enzymes (PC1/3, PC2, and peptidyl-glycine α-amidating monooxygenase). In total, 373 peptides were informative enough to predict processing sites in that they have signal sequence cleavage sites, PC consensus sites, or monobasic cleavage sites. Several monobasic cleavage sites identified here were previously proved to be generated by PCs. Thus, our approach helps to predict processing sites of RSP precursor proteins and will expedite the identification of unknown bioactive peptides hidden in precursor sequences.The generation of peptide hormones or neuropeptides involves the proteolytic processing of precursor proteins by specific proteases. In neurons and endocrine cells, most, if not all, of these bioactive peptides are generated within the RSP1 in which the processing enzymes PC1/3 or PC2 cleave precursors at basic residues (1, 2). The PC-mediated cleavage most often occurs at consecutive basic residues, but not all basic residues serve as PC recognition sites (2). This is partly because the secondary structure of a precursor also affects the substrate recognition (3). Identification of processing sites is hence a prerequisite for locating unknown peptides hidden in a precursor sequence.Peptidomics has been advocated to comprehensively study peptides cleaved off from precursor proteins by endogenous proteases (46). These naturally occurring peptides are beyond the reach of current proteomics and should be analyzed in their native forms. Unlike proteomics, peptidomics has the potential to uncover processing sites of precursor proteins. Most peptidomics studies, which target tissue peptidomes from brain or endocrine organs (711), have provided limited information about secretory peptides that could help to identify processing sites; they are too often blurred by subsequent actions of exopeptidases (cutting off a single amino acid or dipeptide from either end of a peptide).In MS-based identification of bioactive peptides present in biological samples, their relative low abundance in a total pool of naturally occurring peptides should be considered. Once extracted from cultured cells or tissues, bona fide secretory peptides and nonsecretory peptides or peptide fragments caused by degradation of abundant cytosolic proteins cannot be discriminated, and therefore we need to analyze samples rich in secretory peptides to facilitate the identification of bioactive peptides. Several attempts have been made to isolate secretory proteins or peptides, such as subcellular fractionation for harvesting secretory granules (12, 13). With all these efforts, a limited number of secretory peptides have been identified, and many known bioactive peptides still escape analysis.We took advantage of the fact that peptides processed in the RSP are enriched in secretory granules of neurons and endocrine cells and released on exocytosis. Here we applied a brief exocytotic stimulus (2 min) to cultured human endocrine cells and identified peptides released into supernatant using LC-MSMS on an LTQ-Orbitrap mass spectrometer. Nearly 97% of the identified peptides arose from precursor proteins known to be recruited to the RSP, such as peptide hormone precursors and granin-like secretory proteins. Our approach was validated by the identification of previously known processing sites of peptide hormone precursors. In addition, a majority of the identified peptides retained cleavage sites that agree with consensus cleavage sites for PCs, which are informative enough to deduce the processing sites of RSP proteins. This peptidomics approach will expedite the identification of unknown bioactive peptides.  相似文献   

18.
Using an ultrastructural postembedding immunogold technique, we demonstrated vasoactive intestinal polypeptide (VIP)- and calcitonin gene-related peptide (CGRP)-like immunoreactivity in the Merkel cell dense-cored granules of skin and sinus hair follicles of adult cat and dog. The VIP-like substance was located in cat Merkel cells while both VIP- and CGRP-like substances were colocalised in dog Merkel cells. In cat Merkel cells, the magnitude of labelling of VIP was qualitatively higher than in dog Merkel cells. In the dog Merkel cell, CGRP appeared as the most abundant peptide. Dense-cored granules were labelled for these peptides. In addition, mast cells encountered in the dermal region of dog skin were also found to be immunolabelled by VIP antiserum. The immunoreaction was found to be confined to the secretory granules of the cells. Furthermore, all non-myelinated nerve plexuses encountered in the dermal region of the skin and the sinus hair follicles of the various mammalian species studied were immunolabelled by CGRP antiserum. The specific location was again restricted to the dense-cored granules present in these nerves. As VIP and CGRP have potent vasodilatory effects, our observations suggest that Merkel cells may play a separate or synergistic role in regulatory functions of the skin neuroendocrine cell, exerting their influence by paracrine, endocrine and neurocrine pathways, or a combination of these. Different methodologies of double labelling with different sizes of gold particles are also discussed.  相似文献   

19.
Summary Numerous endocrine cells can be observed in the gut of the lizard Podarcis hispanica after application of the Grimelius silver nitrate technique. The argyrophilic endocrine cells are usually tall and thin in the small intestine but short, basal, and round in the large intestine. Eleven types of immunoreactive endocrine cells have been identified by immunocytochemical methods. Numerous serotonin-, caerulein/gastrin/cholecystokinin octapeptide-and peptide tyrosine-tyrosine-immunoreactive cells; a moderate number of pancreatic polypeptide-, neurotensin-, somatostatin-, glucagon-like peptide-1-and glucagon-immunoreactive cells, and few cholecystokinin N-terminal-and bombesin-immunoreactive cells were found in the epithelium of the small intestine. Coexistence of glucagon with GLP-1 or PP/PYY has been observed in some cells. In the large intestine a small number of serotonin-, peptide tyrosine-tyrosine-, pancreatic polypeptide-, neurotensin-, somatostatin-and glucagon-like peptide-1-immunoreactive cells were detected. Vasoactive intestinal peptide immunoreactivity was found in nerve fibers of the muscular layer. Substance P-immunoreactive nerve fibers were detected in lamina propria, submucosa and muscular layer. Chromogranin A-immunoreactive cells were observed throughout the intestine, although in lower numbers than argyrophilic cells.  相似文献   

20.
Summary Immunoreactivity of regulatory peptides has been demonstrated in the fetal lung of Macaca mulatta by the peroxidase anti-peroxidase method. Serotonin-immunoreactive neuroepithelial bodies are distributed in the airways from the bronchi to the alveolar ducts. Many neuroepithelial bodies also show bombesin-like immunoreactivity; a very few are immunoreactive to somatostatin antiserum. Four populations of neuroepithelial bodies were identified which contain immunoreactivity for 1) serotonin alone, 2) serotonin and bombesin, 3) serotonin and somatostatin, and 4) serotonin, bombesin, and somatostatin. Since bombesin and somatostatin have been demonstrated to have opposite effects on the release of other peptide hormones, it seems likely that the presence of these same peptides in neuroepithelial bodies may have a similar regulatory role in the lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号