首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hawaiian waters show a trend of increasing temperature over the past several decades that are consistent with observations in other coral reef areas of the world. The first documented large‐scale coral bleaching occurred in the Hawaii region during late summer of 1996, with a second in 2002. The bleaching events in Hawaii were triggered by a prolonged regional positive oceanic sea surface temperature (SST) anomaly greater than 1°C that developed offshore during the time of annual summer temperature maximum. High solar energy input and low winds further elevated inshore water temperature by 1–2°C in reef areas with restricted water circulation (bays, reef flats and lagoons) and in areas where mesoscale eddies often retain water masses close to shore for prolonged periods of time. Data and observations taken during these events illustrate problems in predicting the phenomena of large‐scale bleaching. Forecasts and hind‐casts of these events are based largely on offshore oceanic SST records, which are only a first approximation of inshore reef conditions. The observed oceanic warming trend is the ultimate cause of the increase in the frequency and severity of bleaching events. However, coral reefs occur in shallow inshore areas where conditions are influenced by winds, orographic cloud cover, complex bathymetry, waves and inshore currents. These factors alter local temperature, irradiance, water motion and other physical and biological variables known to influence bleaching.  相似文献   

2.
Gaard  E 《Journal of plankton research》1999,21(6):1133-1152
The Faroe shelf water is separated from the offshore water by a persistent tidal front, which surrounds the islands. This shelf water contains a neritic zooplankton community, which, regarding species composition, production, seasonal development and environmental conditions, is quite different from that in the surrounding ocean. While during spring and summer the zooplankton in the oceanic environment are dominated by the copepod Calanus finmarchicus, the zooplankton in the shelf water are largely dominated by neritic copepods, mainly Acartia longiremis and Temora longicornis. Calanus finmarchicus occurs in interannually highly variable abundance in the Faroe shelf ecosystem. Meroplanktonic larvae, mainly Balanus spp, and decapod larvae, are also common in the shelf water during spring and summer. During the period presented (1989-1997), the Faroe shelf ecosystem has undergone very large changes in abundance of different zooplankton species. The midsummer abundance of C.finmarchicus, which originally is advected into the shelf from the open ocean, fluctuated from 400 copepods m-3 in 1989 to 25 copepods m-3 in 1994, and at the same time the neritic zooplankton increased from 120 m-3 in 1989 to 450 m-3 in 1994. Consequently, the midsummer biomass in the shelf fluctuated by a factor of 10 during the same period. It is presumed that this variability between oceanic- and neritic-dominated zooplankton, their sizes and their biomass has greatly affected the entire pelagic ecosystem.   相似文献   

3.
Recent studies have focused on linking marine microbial communities with environmental factors, yet, relatively little is known about the drivers of microbial community patterns across the complex gradients from the nearshore to open ocean. Here, we examine microbial dynamics in 15 five-station transects beginning at the estuarine Piver's Island Coastal Observatory (PICO) time-series site and continuing 87 km across the continental shelf to the oligotrophic waters of the Sargasso Sea. 16S rRNA gene libraries reveal strong clustering by sampling site with distinct nearshore, continental shelf and offshore oceanic communities. Water temperature and distance from shore (which serves as a proxy for gradients in factors such as productivity, terrestrial input and nutrients) both most influence community composition. However, at the phylotype level, modelling shows the distribution of some taxa is linked to temperature, others to distance from shore and some by both factors, highlighting that taxa with distinct environmental preferences underlie apparent clustering by station. Thus, continental margins contain microbial communities that are distinct from those of either the nearshore or the offshore environments and contain mixtures of phylotypes with nearshore or offshore preferences rather than those unique to the shelf environment.  相似文献   

4.
The coastal ocean off south-western Australia is characterisedby the southward-flowing Leeuwin Current, which suppresses theupwelling typically associated with other eastern boundary currentsin the southern hemisphere. This results in a unique environmentfor the transport and survival of planktonic fish larvae. Thehorizontal and vertical structure of larval fish assemblagesoff south-western Australia was investigated during winter (August2003) and summer (January 2004), and related to these unusualregional oceanographic and biological processes. Larval fishwere sampled along a four station transect running from theinner continental shelf to offshore waters, using depth-integratedbongo net tows and depth-stratified EZ net tows. The distributionof taxa across the shelf and offshore was strongly influencedby the current regime at the time of sampling. Larval fish assemblagestructure reflected the distinctive oceanographic conditionsfound during each season, and vertical depth distributions oflarvae affected their horizontal location. Continental shelfsamples were dominated by larvae of pelagic fishes, such asclupeiform species (e.g. Sardinops sagax), whereas offshoreassemblages were characterised by larvae of oceanic families,such as Myctophidae and Phosichthyidae. The winter cruise (August2003) was completed during a time of strong, southerly LeeuwinCurrent flow, whereas the northward-flowing Capes Current, incombination with surface offshore Ekman transport, predominatedduring summer. The vertical depth preferences of larvae wereparticularly influential in affecting their horizontal position;especially so for surface-dwelling larval fishes found duringsummer. This study represents the first documentation of thevertical structure of ichthyoplankton assemblages in the oligotrophicwaters off south-western Australia.  相似文献   

5.
Xu Zhaoli 《农业工程》2007,27(9):3678-3686
Distribution patterns and abundance of the euphausiids were examined in the East China Sea (23°30′ –33°00′N, 118°30′ –128°00′ E) in relation to temperature and salinity. The data were collected in 4 surveys from 1997 to 2000. The density or yield density model was used to predict optimum temperature and salinity of water for euphausiid distribution, and thereafter distribution patterns of euphausiids were determined based on the predicted parameters. Of 23 species, Euphausia pacifica, E. nana, Pseudeuphausia sinica and P. latifrons were numerically dominant. The analyses indicate that Euphausia pacifica is an offshore temperate water species, E. nana is an offshore temperate warm water species, P. sinica is a coastal subtropical water species and P. latifrons is an oceanic tropical water species. The 4 species occupied 4 different water masses, respectively, namely, cold water mass, cold and warm water mixed masses in winter and spring, cold and warm water mixed masses in summer and autumn, and warm water mass, which could be the good designators of individual water masses, respectively. The predicated optimal temperatures for E. tenera, S. carinatum, E. diomedeae, Stylocheiron affine, Nematoscelis sp., N. gracilis, N. atlantica, Stylocheiron sp. and S. suhmii are all > 25°. These species are mainly distributed in southern Kuroshio in winter and spring, Kuroshio, the Taiwan Warm Current and Tsushima Current in summer and autumn, the equatorial waters of Pacific Ocean and the eastern waters of the Taiwan Strait. They are called as oceanic tropical water species. Nematoscelis tenella and T. tricuspidata are referred to as offshore subtropical water species according to their geographic distributions even if they are halobionts. Euphausia sanzoi is considered as a typical offshore subtropical water species, which inhabited waters below 25°. Stylocheiron microphthalma, occupying warm current waters where temperature and salinity are nearly 25° and 34 in summer and autumn, belongs to oceanic tropical water species. In the same way, E. similes, E. mutica, Euphausia sp., E. brevis and E. recurva are classified into offshore subtropical water species in accordance with the optimum temperature and salinity of waters as well as locations and seasons of their occurrence. Optimum temperature, rather than salinity, is a better parameter in determining the distribution patterns of euphausiids.  相似文献   

6.
Several investigations exist which use planktonic communities as indicators of water quality in Jamaican and Caribbean Bays, however, few are conducted before there are obvious effects of eutrophication. Therefore, most of our ‘baseline’ data are for bays already severely affected by pollution. This study was conducted to assess water quality in Discovery Bay, Jamaica, before there were severe signs of eutrophication. The bay was monitored over a 12-month period (October 1995–September 1996) using 10 stations. Physicochemical data indicated a well mixed upper 5 m of water column, below which discontinuities in temperature/salinity profiles indicated the influence of colder, more saline waters associated with deep offshore currents. Physicochemical variables were within the range for oligotrophic systems with a tendency towards mesotrophic in localized areas close to the shoreline. Signs of anthropogenic stress were associated with the eastern, southwestern and western sections of the bay. Of the over 120 species of phytoplankton found in the waters of Discovery Bay, most were neritic/oceanic and diatoms dominated while 11 were found to be potentially harmful species. While these harmful species occurred at all stations they occurred most frequently at stations on the eastern side of the bay. About 107 zooplankton species were identified, 52 of which were copepods. The species also represented a mix of neritic and oceanic taxa and mean abundances for the area ranged from 1077 m−3 at the mouth of the bay to 3794 m−3 close to the south shore (station 6). Generally stations closest to shore had greater zooplankton abundances than centrally located bay stations and stations close to oceanic influence. Acartia tonsa and Lucifer faxoni showed greatest densities at shoreline areas of the bay while Oithona plumifera, Undinula vulgaris and Temora stylifera were important at stations closest to oceanic influences. These species were thus considered as indicators of these different areas within the bay. From physicochemical data and the planktonic assemblage, Discovery Bay cannot be considered polluted, it is still more accurately classified as generally pristine with mesotrophic zones in the eastern and southeastern sections of the bay. These data therefore provide a real baseline of conditions for similar tropical coastal embayments.  相似文献   

7.
Mesozooplankton were sampled at shelf and oceanic stations close to South Georgia, South Atlantic during austral autumn 2004 with a Longhurst Hardy Plankton Recorder. Onshelf biomass ranged from 2.18 to 5.75 g DM m?2 (0–200 m) and was dominated by the small euphausiid Thysanöessa spp. At the oceanic stations (10.57–14.71 g DM m?2, 0–1,000 m) large calanoids, principally Rhincalanus gigas comprised ~47–52% of biomass. Here Calanus simillimus was still active and reproducing in surface waters (0–11.2 eggs fem day?1) but R. gigas and Calanoides acutus were largely resident in the warm deep water and undergoing their seasonal descent. A comparison with spring and summer data indicated increased abundance and biomass from spring through to summer followed by a decline towards autumn particularly over the shelf. Autumn values in oceanic waters differed little from summer. Mesozooplankton biomass in the surface 200 m of the oceanic stations as a proportion of that found in the top 1,000 m ranged from 63 to 78% of the total in spring and 62–73% in summer, but was only 23–29% of the total in this study, following redistribution down the water column.  相似文献   

8.
A biweekly sampling program from two stations at the easternLevant Basin was carried out during a 1-year period (1983).The first station (neritic) was located 2 km offshore over theIsraeli continental shelf, while the second (pelagic) was located10 km offshore slightly beyond the continental shelf. It wasfound that during summer the relatively close pelagic watershad chlorophyll a concentrations comparable with the most oligotrophicdeep sea regions of the world's oceans. During winter and spring,profound fluctuations were observed in both phytoplankton standingcrop and primary productivity at the neritic station. This wasin response to weather phenomena, such as heavy rains or storms,which did not affect the pelagic Station to such an extent.The picoplanklon size fraction (<3 µm) dominated atthe neritic station during summer and fall, while the nanoplanktonfraction (3–20 µm) dominated during spring. At thepelagic station the picoplankton fraction dominated almost allyear round, but it is suspected that some portion of it wasphotosynthetically inactive.  相似文献   

9.
Flow patterns adjacent to shore may prevent or aid shorewardmigration of benthic invertebrate larvae. We hypothesized thata front at the mouth of Sunset Bay, Oregon, prevents shorewarddispersal of larvae, significantly altering settlement of mussellarvae and barnacle cyprids. Settlement was measured at threesets of moorings (three moorings per site) distributed acrossthe front at Sunset Bay. From 6 July to 4 September 2000, sampleswere collected roughly every other day. Concurrently, we madevertical zooplankton tows adjacent to each mooring site andcollected physical oceanographic data. During upwelling-favorablewinds, the front was always present at the bay mouth, separatingsignificantly cooler, saltier and denser offshore water fromthat within the bay. During downwelling winds, the front brokedown and we found no significant difference in the surface physicaloceanographic parameters across the bay mouth. During upwelling,the concentration of mussel larvae was higher seaward of thefront than landward, but there was no significant differencein concentration during downwelling, suggesting that the frontmay act as a barrier to the shoreward dispersal of mussels.Mussel settlement was too low and sporadic to allow statisticalanalysis. There was no difference in cyprid concentrations acrossthe bay mouth whether the front was present or not. Cyprid settlementwas, however, nearly an order of magnitude lower at mooringsseaward of the front than at those landward. A significant cross-correlationwas found between settlement at the offshore mooring and tidalrange (r = 0.464, lag = 0 days) and between settlement at themid and inner moorings and downwelling winds (r = 0.532 midbay, r = 0.532 inner bay, lag = 0 days). Seaward of the front,settlement varied with tidal range, while landward of the front,most settlement occurred as brief pulses during downwellingwinds, periods when the front was not present. We found largedifferences in the distribution of cyprids, and mussel larvaeand cyprid settlement relative to the front; larval distributionsand settlement varied with upwelling versus downwelling windsand was due to differences in the very nearshore (i.e. within100–1000 m of shore) coastal oceanography.  相似文献   

10.
To investigate seasonal variation in the community structureof appendicularians, vertical hauls (0–500 m) with a Norpacnet were made at an offshore station in Toyama Bay at intervalsof 2–4 weeks from February 1990 to January 1991. Additionalsamples were collected with MTD nets at 12–17 differentdepth layers between the surface and a depth of 600–700m at the same position in June, September and December 1986,and March 1992, to examine the vertical distribution of appendicularians.Twenty-one species (including two unidentified species) belongingto five genera were found, and the dominant species were dividedinto three groups by their occurrence period. Oikopleura longicauda,Fritillaria borealis f. typica and F. borealis f. sargassi occurredthroughout most of the year. Fritillaria pellucida, O. fusiformisand O. rufescens were found in summer and autumn. Oikopleuradioica was found in spring and winter. Oikopleura longicaudawas overwhelmingly the most abundant species throughout theyear. This species was always distributed in the upper 100 mdepth, with a peak at a depth of 0–50 m that correspondedto the peak of chlorophyll a concentration during the day andnight in all seasons. The day–night vertical distributionpatterns of F. borealis f. typica, F. pellucida, O. fusiformisand O. rufescens were similar to that of O. longicauda. Seasonalvariations in abundance of appendicularians are considered tobe the result of biological factors rather than physical factorssuch as temperature and salinity. In particular, O. dioica seemsto be affected by food availability.  相似文献   

11.
The time-space behavior of thermohaline properties of the water masses in the Gulf of Nicoya, a tropical estuary in the Costa Rican Pacific coast, was studied by sampling monthly from April 1992 to April 1993. The saline field has a seasonal maximum during April, a month before the maximum temperature is observed. Minimun values were observed during October and November, in the rainy season. A defined surface saline front is located towards the east of Negritos Islands; it is produced by the interaction of freshwater from the Tarcoles River and the oceanic waters that enter through the occidental coast of the gulf. The vertical distribution of temperature and salinity indicates a gulf whose internal area is highly stratified in the rainy season, and much less stratified, or even well mixed in the dry season. The outer area of the Gulf is stratified throughout the year.  相似文献   

12.
依据2010年4月、7月和11月对浙江中部近海上升流海域进行的海洋调查资料,运用定量、定性方法,探讨了上升流对该海域浮游动物生态类群分布的影响.结果表明:3个季节共鉴定浮游动物64种,桡足类占主要优势,包括5个生态类群,分别是暖温带近海种、暖温带外海种、亚热带近海种、亚热带外海种和热带大洋种.在种类数组成上,春季以暖温带近海种为主,夏季则是亚热带近海种和亚热带外海种居多,秋季也是亚热带种居多,其中夏季暖温带种种类数要高于春季和秋季,这一现象与同时期东黄海沿海有所不同,主要是由于上升流将一些在海洋底部度夏的暖温种带至海洋表面造成的.此外,3个季节生态类群都是以近海种为主,表明沿岸流是影响这一海域的最主要的水团.在丰度组成上,4月暖温带近海种占总丰度的98.79%,7月暖温带近海种也是组成丰度的重要部分,10月则是亚热带近海种丰度最高.丰度组成所反映的规律与种类数组成规律一致.上升流的存在导致夏季近海暖温带种大量出现,是影响这一海域浮游动物生态类群组成的重要因素;受长江径流和椒江径流的影响,近海种成为主要生态类群,是这一海域浮游动物的一个重要的生态特征.  相似文献   

13.
The larval fish fauna occurring in temperate bay and shelf waters off Victoria, southern Australia, was found to be diverse, comprising taxa from 52 families. The most abundant groups collected were gobiids, tripterygiids, gobiesocids and clupeids. Fish egg concentrations were highest during spring and summer (September to February). Eggs of the Australian anchovy Engraulis australis occurred mainly during spring (September to November). Total larval fish concentrations were highest during summer (December to February), and were significantly higher at 1 km than 2 and 5 km from shore in offshore samples. Larval concentrations of a number of families, mainly reef‐associated taxa that attach their eggs to hard substrata, were also higher nearer to shore. These larvae are more developed upon hatching than those of pelagic spawners and more capable of avoiding passive drift. Multivariate analyses found that larval taxonomic composition did not vary significantly with distance from shore, but that seasonal and monthly groupings were evident, with different taxa dominating at different times of the year. Larvae of the families Gobiidae and Tripterygiidae occurred in all months, but were less abundant during winter. Spatial differences in the larval fish assemblage between offshore samples and samples taken in the bay were only apparent during summer. This was primarily due to a higher abundance of seagrass‐associated species, such as syngnathids and hemiramphids, utilizing specific habitats in the bay.  相似文献   

14.
Summary Production studies were carried out in the Mackenzie River/Beaufort Sea estuary during the summer of 1986. Results indicate that there were two plankton communities. One was located near the river mouth and was characterized by high dissolved organic carbon, high bacterial activity and a community of amphipods. The second community was associated with high phytoplankton production off shore and with a community of copepods, hydromedusae and ctenophores. The offshore marine/oceanic community was quantitatively much more productive than the near shore bacterial community during the summer months.  相似文献   

15.
Herbivory by copepods was studied from the coast towards theocean, during a bloom in May 1994 off NW Spain.Ingestion rateswere estimated by the gut chlorophyll content method in threesize fractions. The chlorophyll content displayed significantdaily cycles. Three different water bodies were described: coastal,shelf break and oceanic; the latter two zones separated by athermo haline frontal structure. Marked differences in planktonspecies composition, vertical distribution and biological rateswere found between zones. Theiiighest phytoplankton biomass,dominated by chain- forming diatoms, occurred in the oceaniczone associated with low primary production rates. Copepod feedinghad a low effect on oceanic phytoplankton; up to 0.2% of carbonstock and<3% of carbon production was consumed daily. Incontrast, medium-sized and large copepods removed 3% of carbonstock and 12% of primary production daily near the coast, wherephytoplankton were dominated by small flagellates in activegrowth. The highest variability in both plankton compositionand ingestionrates was found in the shelf-break zone, probablydue to displacements of the front. Copepods exerted a moderatepredation pressure on phytoplankton in coastal waters. Meanwhile,the impact of copepods on the offshore bloom was negligibleand the fate of the accumulated particulate carbon would bemostly determined by sedimentationand water dynamics.  相似文献   

16.
The mesozooplankton community was monitored at both coastaland offshore sites of the Basque shelf (inner Bay of Biscay)during 1988–1990 This was considered of interest becausethe local climate change toward dry conditions was found tobe responsible for changes in shelf-water properties. In additionto seasonal changes, interannual variations in mesozooplanktonabundance and composition were evident, and primarily relatedto the year-to-year increase in water temperature and salinity.The increasing trends in copepod dominance, coupled with theincreasing abundance of species with oceanic affinity (e.g.Euchaeta hebes), were presumably a response to the increasein oceanic features in the shelf area. In the same way, thesubstantial year-to-year increase in the abun dance of specieswith summer-autumn development was attributed to the progressivewarming. Among these species, the case of Temora stylifera isdiscussed specifically because this species was very scarcein 1988, but showed unusual high abundances for the study area,and dominated the summer-autumn assemblage in 1990. We thinkthat T.stylifera can be a key species in monitoring climate-oceanologicalchanges affecting the Bay of Biscay. Results are also discussedin the context of the long climate-oceanological series forthe Bay of Biscay, and its biogeographical status.  相似文献   

17.
Blooms of jellyfish around the world have been correlated with climatic variables related to environmental causes. Sizeable populations of large medusae, primarily Chrysaora fuscescens and Aequorea sp., appear annually in shelf waters of the Northeast Pacific Ocean. Previous research has shown that C. fuscescens is abundant seasonally in the inner shelf and exhibits high feeding rates on zooplankton. We examined medusae caught in surface trawls over an 8-year period (2000–2007) using (1) mesoscale surveys sampling 8–10 transects in May, June, and September, and (2) biweekly surveys along two transects from April to August, relating abundance to environmental parameters. C. fuscescens abundances generally peaked in late summer, whereas Aequorea sp. peaked in May or June. General additive models of the mesoscale data indicated that station catches for both species correlated with latitude, temperature, salinity, and distance from shore (and chlorophyll a for Aequorea sp.). Analysis of interannual variability revealed that highest catches of medusae correlated with cool spring–summer conditions, or negative anomalies of the Pacific Decadal Oscillation, and low winter–summer runoff from the Columbia River. Results confirmed our hypothesis of connections between jellyfish populations and regional climate conditions in a region known for strong physical forcing of ecosystem processes.  相似文献   

18.
Vertical profiles were made at one offshore station and onecoastal station, on 4-5 September 1996, in the south-easternSkagerrak. The surface water of the two stations differed significantlywith respect to both temperature and salinity, as the outerstation (A) was situated in high-saline water originating fromthe North Sea, while the low-saline surface water at the innerstation (B) was influenced by the Baltic current. Virus-likeparticle (VLP) abundance was 5 x 109–25 x 1091–1H in the 0-50 m water column. Maximal VLP values were foundin the surface water, although a lower number was detected inthe low-saline surface water (0 m depth) at station B. Virusesinfective to Micromonas pusilla were estimated to  相似文献   

19.
Ammonia aomoriensis(Asano,1951)和Ammonia beccarii(Linnaeus,1758)是两个形态学易混淆,但被广泛使用并具有重要环境指示意义的有孔虫。通过对渤海、黄海和东海陆架区60个站位表层沉积物的水平分布调查,并连续17个月对潮间带分低潮区和高潮区进行了季节调查,对二者的形态分类、生态分布和环境关系进行比较研究。结果表明A.aomoriensis和A.beccarii在潮间带的丰度都有季节性变化,体现冬高夏低的特点,前者一般在高潮区较多,后者在低潮区较多。二者的丰度从潮间带到陆架区随着水深的增加呈阶梯式锐减:平均含量分别达22%和39%;在水深<20m的陆架区平均含量分别降至15%和6%;在水深>20m的陆架区平均含量分别再次降至0.6%和1.4%。统计分析表明二者对盐度和水深的响应相似,但对温度的反应存在差异:在潮间带环境,二者的丰度都与盐度显著正相关;在浅海陆架环境,二者的丰度都与水深呈显著负相关;无论在潮间带还是陆架海区,A.beccarii的丰度都与海水温度呈显著负相关,但A.aomoriensis与温度相关性不显著。本研究结果显示A.aomoriensis和A.beccarii对滨岸浅海都具有优越的指示作用,在古环境分析中,首先可根据二者的含量进行环境推测(潮间带或者陆架浅海),再利用不同环境下本文所建立的线性方程对海水温、盐、深进行大体的估算。  相似文献   

20.
Based on bottom trawl surveys in autumn 2000 and spring 2001, the fish assemblage structure in the southern Yellow Sea and the continental shelf of the East China Sea was analysed. Four groups of fishes were identified for each season by the two-way indicator species analysis (TWIA). Although seasonal migration caused a slight difference in fish assemblages between autumn and spring, two major groups of fishes, corresponding to the Yellow Sea and East China Sea were identified. Inshore and offshore groups were subsequently separated. Changes in water depth may be most important in the separation of the groups in the offshore waters of the East China Sea. Temperature affected the groupings between north and south, particularly in the central part of the Yellow Sea. Here, the cold water mass affected the species composition which was low in diversity and different from the other areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号