首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An important aspect of cell behaviour is that DNA replication happens only once per cell cycle. Replicated DNA is unable to re-replicate until cell division has occurred. Unreplicated DNA is in a replication-competent or 'licensed' state. The ability to replicate is lost in S phase and regained following passage through mitosis. Recent evidence has implicated an MCM (minichromosome maintenance) protein complex and the Cdc6 protein in determining replication competence. Regeneration of replication competence upon passage through mitosis entails changes in protein kinase activity, of which the MCMs are a likely target. Features of the mechanism that restricts DNA replication to once per cell cycle appear to be conserved throughout eukaryotes.  相似文献   

2.
Cell cycle checkpoints guard against the inappropriate commitment to critical cell events such as mitosis. The bisdioxopiperazine ICRF-193, a catalytic inhibitor of DNA topoisomerase II, causes a reversible stalling of the exit of cells from G2 at the decatenation checkpoint (DC) and can generate tetraploidy via the compromising of chromosome segregation and mitotic failure. We have addressed an alternative origin – endocycle entry - for the tetraploidisation step in ICRF-193 exposed cells. Here we show that DC-proficient p53-functional tumour cells can undergo a transition to tetraploidy and subsequent aneuploidy via an initial bypass of mitosis and the mitotic spindle checkpoint. DC-deficient SV40-tranformed cells move exclusively through mitosis to tetraploidy. In p53-functional tumour cells, escape through mitosis is enhanced by dominant negative p53 co-expression. The mitotic bypass transition phase (termed G2endo) disconnects cyclin B1 degradation from nuclear envelope breakdown and allows cells to evade the action of Taxol. G2endo constitutes a novel and alternative cell cycle phase - lasting some 8 h - with distinct molecular motifs at its boundaries for G2 exit and subsequent entry into a delayed G1 tetraploid state. The results challenge the paradigm that checkpoint breaching leads directly to abnormal ploidy states via mitosis alone. We further propose that the induction of bypass could: facilitate the covert development of tetraploidy in p53 functional cancers, lead to a misinterpretation of phase allocation during cell cycle arrest and contribute to tumour cell drug resistance.  相似文献   

3.
The antiviral activity of interferon, measured as the reduction of viral yield, was studied as a function of the cell cycle phases. The present study shows that cells which are about to enter DNA replication phase S and cells that are in mitosis phase M are not refractive to viral infection when treated with interferon. The growth of Sindbis virus, used as the challenger, dropped considerably at the G1-S junction, at mitosis phase M, and as cells entered into a deeper quiescent state.  相似文献   

4.
The eukaryotic cell division cycle encompasses an ordered series of events. Chromosomal DNA is replicated during S phase of the cell cycle before being distributed to daughter cells in mitosis. Both S phase and mitosis in turn consist of an intricately ordered sequence of molecular events. How cell cycle ordering is achieved, to promote healthy cell proliferation and avert insults on genomic integrity, has been a theme of Paul Nurse's research. To explain a key aspect of cell cycle ordering, sequential S phase and mitosis, Stern & Nurse proposed 'A quantitative model for cdc2 control of S phase and mitosis in fission yeast'. In this model, S phase and mitosis are ordered by their dependence on increasing levels of cyclin-dependent kinase (Cdk) activity. Alternative mechanisms for ordering have been proposed that rely on checkpoint controls or on sequential waves of cyclins with distinct substrate specificities. Here, we review these ideas in the light of experimental evidence that has meanwhile accumulated. Quantitative Cdk control emerges as the basis for cell cycle ordering, fine-tuned by cyclin specificity and checkpoints. We propose a molecular explanation for quantitative Cdk control, based on thresholds imposed by Cdk-counteracting phosphatases, and discuss its implications.  相似文献   

5.
c-myc is an important protooncogene whose misregulation is believed to causally affect the development of numerous human cancers. c-myc null rat fibroblasts are viable but display a severe (two- to threefold) retardation of proliferation. The rates of RNA and protein synthesis are reduced by approximately the same factor, whereas cell size remains unaffected. We have performed a detailed kinetic cell cycle analysis of c-myc(-/-) cells by using several labeling and synchronization methods. The majority of cells (>90%) in asynchronous, exponential phase c-myc(-/-) cultures cycle continuously with uniformly elongated cell cycles. Cell cycle elongation is due to a major lengthening of G(1) phase (four- to fivefold) and a more limited lengthening of G(2) phase (twofold), whereas S phase duration is largely unaffected. Progression from mitosis to the G1 restriction point and the subsequent progression from the restriction point into S phase are both drastically delayed. These results are best explained by a model in which c-Myc directly affects cell growth (accumulation of mass) and cell proliferation (the cell cycle machinery) by independent pathways.  相似文献   

6.
Cdt1 begins to accumulate in M phase and has a key role in establishing replication licensing at the end of mitosis or in early G1 phase. Treatments that damage the DNA of cells, such as UV irradiation, induce Cdt1 degradation through PCNA-dependent CRL4-Cdt2 ubiquitin ligase. How Cdt1 degradation is linked to cell cycle progression, however, remains unclear. In G1 phase, when licensing is established, UV irradiation leads to Cdt1 degradation, but has little effect on the licensing state. In M phase, however, UV irradiation does not induce Cdt1 degradation. When mitotic UV-irradiated cells were released into G1 phase, Cdt1 was degraded before licensing was established. Thus, these cells exhibited both defective licensing and G1 cell cycle arrest. The frequency of G1 arrest increased in cells expressing extra copies of Cdt2, and thus in cells in which Cdt1 degradation was enhanced, whereas the frequency of G1 arrest was reduced in cell expressing an extra copy of Cdt1. The G1 arrest response of cells irradiated in mitosis was important for cell survival by preventing the induction of apoptosis. Based on these observations, we propose that mammalian cells have a DNA replication-licensing checkpoint response to DNA damage induced during mitosis.  相似文献   

7.
SYNOPSIS Chalones,inhibitors of cell dmsion have been isolatedand studied from a number of mammalian tissues, most notably,the epidermis The epidermal rhalone is a glycoprotein It exhibitsconsiderable, but not complete specificity The epidermal chalone decreases mitotic activity by inhibitingcells in the G 2 phase of the cell cycle from entering mitosis,and probably also by inhibiting ceils in the G 1 phase of thecell cycle from entering mitosis To inhibit cells in G 2 fromentering mitosis the chilone requnes adrenalin, and for maximalactivity hydrocortisone It is not known if idrenalin and hydrocortisoneare required for chalone inhibition of cells in G 1 In addition to inhibiting cell division in normal epidermalcells the epidermal chalone can inhibit cell division in regeneratingepidermal cells induced to proliferate by chemical damage Thephase of the cell cycle in which the chalone inhibits legeneratingepidermal cells from entering mitosis is not known Epidermal tumors contain a decreased amount of chalone Mitosisin epidermal tumors is inhibited by treatment with epidermalchalone Tumor cells are inhibitedfrom entering mitosis fromeither the G 1 or G 2 phases of the cell cycle Chalones are said to inhibit mitosis by a negative feedbackmechanism However, experiments which presumably result in adecrease in chalone concentration do not result in an increasein mitotic activity It is suggested that if chalones are physiological controllers of cell division they do not act by a simplenegative feedback mechanism but require the action of a substanceto decrease their concentration  相似文献   

8.
The objective of this study was to examine the rate of synthesis and the intracellular levels of polyamines as a function of the HeLa cell cycle. The intracellular levels of ornithine, which were high during mitosis and early G1 phase, decreased rapidly during late G1 phase when the ornithine decarboxylase activity was at its peak. The activities of ornithine decarboxylase and S-adenosyl methionine decarboxylase reached a peak during G1 and decreased rapidly during the S phase. The levels of polyamines were maximum in mitosis and S phase. In constrast, the rate of polyamine synthesis during S phase was 5–10 fold lower than that in mitosis or G1 phase. We have also observed fluctuations in diamine-oxidase activity during the cell cycle. The enzyme activity was high during mitosis and late G1 and low during S phase. Thus, the results of this study suggest an important role for the catabolic enzymes in the regulation of polyamine levels during the mammalian cell cycle.  相似文献   

9.
Changes in protein tyrosine phosphorylation are known to be important for regulating cell cycle progression. With the aim of identifying new proteins involved in the regulation of mitosis, we used an antibody against phosphotyrosine to analyze proteins from synchronized human and hamster cells. At least seven proteins were found that displayed mitosis-specific tyrosine phosphorylation in HeLa cells (pp165, 205, 240, 250, 270, 290, and ~ 400) and one such protein in hamster BHK cells (pp155). In synchronized HeLa and BHK cells, all proteins except HeLa pp165, pp205, and pp250 were readily detectable only in mitosis. Tyrosine phosphorylation of pp165, pp205, and pp250 was apparent during arrest in S phase, suggesting that cell cycle perturbations can affect the phosphorylation state of some of these proteins. In a related finding in BHK cells, pp155 underwent tyrosine phosphorylation when cells were forced into premature mitosis by caffeine treatment. Only one protein (pp135 in HeLa cells) was found to be dephosphorylated on tyrosine during mitosis. The above findings may prove helpful for isolating new cell cycle proteins that are important for both the normal regulation of mitosis and the mitotic aberrations associated with cell cycle perturbations and chemical treatments.  相似文献   

10.
A role for cyclin D3 in the endomitotic cell cycle.   总被引:15,自引:0,他引:15       下载免费PDF全文
Platelets, essential for thrombosis and hemostasis, develop from polyploid megakaryocytes which undergo endomitosis. During this cell cycle, cells experience abrogated mitosis and reenter a phase of DNA synthesis, thus leading to endomitosis. In the search for regulators of the endomitotic cell cycle, we have identified cyclin D3 as an important regulatory factor. Of the D-type cyclins, cyclin D3 is present at high levels in megakaryocytes undergoing endomitosis and is markedly upregulated following exposure to the proliferation-, maturation-, and ploidy-promoting factor, Mpl ligand. Transgenic mice in which cyclin D3 is overexpressed in the platelet lineage display a striking increase in endomitosis, similar to changes seen following Mpl ligand administration to normal mice. Electron microscopy analysis revealed that unlike such treated mice, however, D3 transgenic mice show a poor development of demarcation membranes, from which platelets are believed to fragment, and no increase in platelets. Thus, while our model supports a key role for cyclin D3 in the endomitotic cell cycle, it also points to the unique role of Mpl ligand in priming megakaryocytes towards platelet fragmentation. The role of cyclin D3 in promoting endomitosis in other lineages programmed to abrogate mitosis will need further exploration.  相似文献   

11.
C Smythe  J W Newport 《Cell》1992,68(4):787-797
In cell-free extracts derived from Xenopus eggs which oscillate between S phase and mitosis, incompletely replicated DNA blocks the activation of p34cdc2-cyclin by maintaining p34cdc2 in a tyrosine-phosphorylated form. We used a recombinant cyclin fusion protein to generate a substrate to measure the ability of the tyrosine kinase(s) to phosphorylate and inactivate p34cdc2 in the absence of tyrosine phosphatase activity. p34cdc2 tyrosine phosphorylation is highly regulated during the cell cycle, being elevated in S phase and attenuated in mitosis. The elevation in p34cdc2 tyrosine phosphorylation rate occurs in response to the presence of incompletely replicated DNA. Moreover, okadaic acid and caffeine, which uncouple the dependence of mitosis on the completion of S phase, increase unphosphorylated p34cdc2 by attenuating tyrosine kinase function. These data indicate that the control system, which monitors the state of DNA replication, modulates the function of the tyrosine kinase by a phosphorylation/dephosphorylation mechanism, ensuring that mitosis occurs only when S phase is complete.  相似文献   

12.
It has been long believed that the cyclin-dependent kinase 2 [Cdk2] binds to cyclin E or cyclin Aand exclusively promotes the G1/S phase transition and that Cdc2/cyclin B complexes play a majorrole in mitosis. We now provide evidence that Cdc2 binds to cyclin E [in addition to cyclin A & B]and is able to promote the G1/S transition. This new concept indicates that both Cdk2 and/or Cdc2can drive cells through G1/S phase in parallel. In this review we discuss the classic cell cycle modeland how results from knockout mice provide new evidence that refute this model. We focus on newroles of Cdc2 and p27 in regulating the mammalian cell cycle and propose a new model for cellcycle regulation that accommodates these novel findings.  相似文献   

13.
The cell cycle is principally controlled by Cyclin Dependent Kinases (CDKs), whose oscillating activities are determined by binding to Cyclin coactivators. Cyclins exhibit dynamic changes in abundance as cells pass through the cell cycle. The sequential, timed accumulation and degradation of Cyclins, as well as many other proteins, imposes order on the cell cycle and contributes to genome maintenance. The destruction of many cell cycle regulated proteins, including Cyclins A and B, is controlled by a large, multi-subunit E3 ubiquitin ligase termed the Anaphase Promoting Complex/Cyclosome (APC/C). APC/C activity is tightly regulated during the cell cycle. Its activation state increases dramatically in mid-mitosis and it remains active until the end of G1 phase. Following its mandatory inactivation at the G1/S boundary, APC/C activity remains low until the subsequent mitosis. Due to its role in guarding against the inappropriate or untimely accumulation of Cyclins, the APC/C is a core component of the cell cycle oscillator. In addition to the regulation of Cyclins, APC/C controls the degradation of many other substrates. Therefore, it is vital that the activity of APC/C itself be tightly guarded. The APC/C is most well studied for its role and regulation during mitosis. However, the APC/C also plays a similarly important and conserved role in the maintenance of G1 phase. Here we review the diverse mechanisms counteracting APC/C activity throughout the cell cycle and the importance of their coordinated actions on cell growth, proliferation, and disease.  相似文献   

14.
The pumping activity of the plasma membrane-bound Na+,K+-ATPase shows considerable variation during the cell cycle of mouse neuroblastoma Neuro-2A cells. Addition of external ATP at millimolar concentrations, which selectively enhances the plasma membrane permeability of Neuro-2A cells for sodium ions, stimulates the Na+,K+-ATPase pumping activity at all phases of the cell cycle from a factor of 1.05 in mitosis up to 2.2 in G1 phase. Determination of the number of Na+,K+-ATPase copies per cell by direct 3H-ouabain binding studies in the presence of external ATP shows a gradual increase in the number of pump sites on passing from mitosis to the late S/G2-phase by approximately a factor of 2. From these data the pumping activity per copy of Na+,K+-ATPase, optimally stimulated with respect to its various substrate ions, has been determined during the various phases of the cell cycle. This optimally stimulated pumping activity per enzyme copy, which is a reflection of the physicochemical state of the plasma membrane, is high in mitosis, almost twofold lower in early G1 phase, and increases gradually again during the other phases of the cell cycle. This shows that the observed regulation of Na+,K+-ATPase activity during the cell cycle is caused by a combination of three independent factors--namely variation in intracellular substrate availability (Na+), changes in number of enzyme copies per cell, and modulation of the plasma membrane environment of the protein molecules. The modulation of the optimal pumping activity per enzyme copy shows a good correlation (rho = 0.96) with the known modulation of protein lateral mobility during the cell cycle, such that a high protein lateral mobility correlates with a low enzyme activity. It is concluded that changes in plasma membrane properties take place during the Neuro-2A cell cycle that result in changes in the rate of protein lateral diffusion and Na+,K+-ATPase activity in directly correlated way.  相似文献   

15.
16.
Abstract The Dictyostelium vegetative cell cycle is characterized by a short mitotic period followed immediately by a short S-phase (less than 30 min) and a long and variable G2 phase. The cell cycle continues during differentiation despite a decrease in cell mass: DNA replication and mitosis occur early in development and also at the tipped aggregate stage. Cells that are in mitosis, S-phase or early G2, when starved differentiate into prestalk cells and cells that are in the middle of G2 differentiate into prespore cells. We postulate that there is a restriction point late in the G2 phase, about 1–2 h before mitosis, where the cells can be arrested either by starvation and the initiation of development, by growing into stationary phase, or by prolonged incubation at low temperature. During development, this block persists to the tipped aggregate stage, where it is specifically released in prespore cells, and these cells then go through one more round of cell division. Genes encoding components of the cell cycle machinery have recently been isolated and attemps to specifically block the cell cycle by reverse genetics to study the effects on differentiation have been initiated.  相似文献   

17.
Several kinetic parameters of basal cell proliferation in hairless mouse epidermis were studied, and all parameters clearly showed circadian fluctuations during two successive 24 hr periods. Mitotic indices and the mitotic rate were studied in histological sections; the proportions of cells with S and G2 phase DNA content were measured by flow cytometry of isolated basal cells, and the [3H]TdR labelling indices and grain densities were determined by autoradiography in smears from basal cell suspensions. The influx and efflux of cells from each cell cycle phase were calculated from sinusoidal curves adapted to the cell kinetic findings and the phase durations were determined. A peak of cells in S phase was observed around midnight, and a cohort of partially synchronized cells passed from the S phase to the G2 phase and traversed the G2 phase and mitosis in the early morning. The fluctuations in the influx of cells into the S phase were small compared with the variations in efflux from the S phase and the flux through the subsequent cell cycle phases. The resulting delay in cell cycle traverse through S phase before midnight could well account for the accumulation of cells in S phase and, therefore, also the subsequent partial synchrony of cell cycle traverse through the G2 phase and mitosis. Circadian variations in the duration of the S phase, the G2 phase and mitosis were clearly demonstrated.  相似文献   

18.
V Simanis  P Nurse 《Cell》1986,45(2):261-268
The cdc2+ gene function has an important role in controlling the commitment of the fission yeast cell to the mitotic cycle and the timing of mitosis. We have raised antibodies against the cdc2+ protein using synthetic peptides and have demonstrated that it is a 34 kd phosphoprotein with protein kinase activity. The protein level and phosphorylation state remain unchanged during the mitotic cycle of rapidly growing cells. When cells cease to proliferate and arrest in G1 the protein becomes dephosphorylated and loses protein kinase activity. Exit from the mitotic cycle and entry into stationary phase may be controlled in part by modulation of the cdc2 protein kinase activity by changes in its phosphorylation state.  相似文献   

19.
Groisman I  Jung MY  Sarkissian M  Cao Q  Richter JD 《Cell》2002,109(4):473-483
The synthesis and destruction of cyclin B drives mitosis in eukaryotic cells. Cell cycle progression is also regulated at the level of cyclin B translation. In cycling extracts from Xenopus embryos, progression into M phase requires the polyadenylation-induced translation of cyclin B1 mRNA. Polyadenylation is mediated by the phosphorylation of CPEB by Aurora, a kinase whose activity oscillates with the cell cycle. Exit from M phase seems to require deadenylation and subsequent translational silencing of cyclin B1 mRNA by Maskin, a CPEB and eIF4E binding factor, whose expression is cell cycle regulated. These observations suggest that regulated cyclin B1 mRNA translation is essential for the embryonic cell cycle. Mammalian cells also display a cell cycle-dependent cytoplasmic polyadenylation, suggesting that translational control by polyadenylation might be a general feature of mitosis in animal cells.  相似文献   

20.
Programmed cell death, or apoptosis, is a highly regulated process used to eliminate unwanted or damaged cells from multicellular organisms. The morphology of cells undergoing apoptosis is similar to cells undergoing both normal mitosis and an aberrant form of mitosis called mitotic catastrophe. During each of these processes, cells release substrate attachments, lose cell volume, condense their chromatin, and disassemble the nuclear lamina. The morphological similarities among cells undergoing these processes suggest that the underlying biochemical changes also may be related. The susceptibility of cells to apoptosis frequently depends on the differentiation state of the cell. Additionally, cell cycle checkpoints appear to link the cell cycle to apoptosis. Deregulation of the cell cycle components has been shown to induce mitotic catastrophe and also may be involved in triggering apoptosis. Some apoptotic cells express abnormal levels of cell cycle proteins and often contain active Cdc2, the primary kinase active during mitosis. Although cell cycle components may not be involved in all forms of apoptosis, in many instances cell proliferation and cell death may share common pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号