首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
脂蛋白与载脂蛋白   总被引:1,自引:0,他引:1  
脂质是生物体内的一类重要物质,包括各种脂肪酸、甘油酯、类固醇、磷脂和糖苷脂等,其共同特点之一是在水溶液中溶解度低,甚至完全不溶。脂质能提供高能量,脂溶性维生素和必需脂肪酸也主要存在于食物的脂肪部分。在体内,脂质的生理功能除了作为能量的利用和储存方式,...  相似文献   

2.
3.
载脂蛋白与动脉粥样硬化关系的新进展   总被引:1,自引:0,他引:1  
  相似文献   

4.
5.
本文观察了新生儿(脐带血),青年(18—24岁),老年(55—65岁)各40例的血脂、脂蛋白、载脂蛋白和低密度脂蛋白LDL受体功能的变化。结果表明,新生儿的血脂,脂蛋白和载脂蛋白含量在各年龄组中最低(P<0.01),其LDL受体结合水平最高,(P<0.01)。血清TC,TG,LDL-C,apo B和CII随增龄上升,但LDL受体水平和HDL-C,apo AI,AII的增龄变化不明显。该结果指出,衰老对LDL受体的结合水平和HDL-C,apo AI,AII的影响似乎不大。另方面说明,TC,LDL-C和apo B浓度随增龄增加而不伴有相应的LDL受体结合水平及HDL-C,APO AI,AII浓度的上升,使老年期的脂蛋白代谢平衡被打破,因而促使高胆固醇血症和动脉粥样斑块的形成。  相似文献   

6.
分子量约26KD的载脂蛋白M(apolipoprotein M,apoM)是脂蛋白超家族(Lipocalin)的成员.apoM特异性在肝实质细胞和肾小管上皮细胞表达,其生理功能可能与肝脏和肾脏的功能密切相关.成熟apoM保留的疏水信号肽介导其"锚着"于脂蛋白颗粒的脂质部分,参与机体脂质代谢.血浆apoM主要存在于高密度脂蛋白(high density lipoprotein,HDL)颗粒中,与前β-HDL的形成有密切关系,参与HDL颗粒的重塑,对维持正常的脂质代谢有重要作用.动物实验进一步证实apoM可能有抗动脉粥样硬化的作用.apoM的深入研究将会为脂代谢异常的疾病如冠心病,糖尿病,肝病等机制的研究打开新的视野,提供新的线索.  相似文献   

7.
以血浆低密度脂蛋白胆固醇过高和高密度脂蛋白胆固醇过低为特征的血脂代谢异常是冠心病(coronary heart disease,CHD)公认的危险因素,而富含甘油三酯脂蛋白(triglyceride-rich lipoproteins,TRLs)与CHD的关系仍没有明确的定论。本文将从分子遗传学视角,综述最新与TRLs代谢相关的载脂蛋白、酶及调节因子等候选基因突变对CHD影响的研究进展,以期为今后CHD的病因学及发病机制研究提供参考。  相似文献   

8.
9.
载脂蛋白M(ApolipoproteinM,apoM)是1999年新发现的,主要存在于高密度脂蛋白(High Density Lipoprotein,HDL)颗粒中的载脂蛋白,其表达具有明显的组织特异性,主要在肝脏和肾脏中表达.目前,apoM的基因结构和定位,蛋白结构已经比较明了.然而,对apoM表达的调控及其功能却不是很清楚.目前已有不少研究深入对apoM功能的探讨,发现该蛋白在脂质及脂蛋白代谢、抗动脉粥样硬化等过程中均起着重要的作用.对该蛋白质的功能及其与临床疾病之间的关系的研究不断深入,将有助于我们进一步发现和理解相关疾病新的发病机制,诊断方法和治疗措施.下面就关于该蛋白的调控以及功能研究进展做一简要综述.  相似文献   

10.
李铁  杨柳 《生物磁学》2011,(21):4072-4074
目的:观察肥胖患者载脂蛋白M水平并探讨其与炎症因子的关系。方法:58例体重正常者和36例肥胖患者常规测量体重、身高,计算体重指数,抽取空腹静脉血检测血脂、血浆载脂蛋白M(apoM)、白细胞介素-6(IL-6)、C反应蛋白(CRP)、肿瘤坏死因子α(TNF—α)。结果:肥胖患者血浆apoM、高密度脂蛋白胆固醇(HDL-C)降低(P〈0.05),IL-6、TNF—α、CRP水平升高(P〈0.05),肥胖患者血浆αpoM与HDL-C正相关,血浆αpoM与IL-6、TNF—α、CRP水平负相关。结论:肥胖患者血浆apoM显著降低,αpoM水平与CRP、TNF-α、IL-6水平密切相关,apoM可能受到这些炎症因子的调控。  相似文献   

11.
To investigate the role of apoM in high density lipoprotein (HDL) metabolism and atherogenesis, we generated human apoM transgenic (apoM-Tg) and apoM-deficient (apoM(-/-)) mice. Plasma apoM was predominantly associated with 10-12-nm alpha-migrating HDL particles. Human apoM overexpression (11-fold) increased plasma cholesterol concentration by 13-22%, whereas apoM deficiency decreased it by 17-21%. The size and charge of apoA-I-containing HDL in plasma were not changed in apoM-Tg or apoM(-/-) mice. However, in plasma incubated at 37 degrees C, lecithin:cholesterol acyltransferase-dependent conversion of alpha- to pre-alpha-migrating HDL was delayed in apoM-Tg mice. Moreover, lecithin: cholesterol acyltransferase-independent generation of pre-beta-migrating apoA-I-containing particles in plasma was increased in apoM-Tg mice (4.2 +/- 1.1%, p = 0.06) and decreased in apoM(-/-) mice (0.5 +/- 0.3%, p = 0.03) versus controls (1.8 +/- 0.05%). In the setting of low density lipoprotein receptor deficiency, apoM-Tg mice with approximately 2-fold increased plasma apoM concentrations developed smaller atherosclerotic lesions than controls. The effect of apoM on atherosclerosis may be facilitated by enzymatic modulation of plasma HDL particles, increased cholesterol efflux from foam cells, and an antioxidative effect of apoM-containing HDL.  相似文献   

12.
Characterization of apolipoprotein M isoforms in low-density lipoprotein   总被引:2,自引:0,他引:2  
Apo M is a recently discovered human lipoprotein thought to be involved in the metabolism of lipids and lipoprotein particles. Here, a proteomic approach was applied to examine the glycosylation pattern of apo M in human LDL. We treated LDL proteins with N-glycosidase or neuraminidase, studied mobility shifts of Apo M by two-dimensional gel electrophoresis, and different isoforms were then identified with mass spectrometry. This way, we demonstrated the presence of five isoforms of apo M in LDL: three that are both N-glycosylated and sialylated, one that is N-glycosylated but not sialylated, and one that is neither N-glycosylated nor sialylated. As judged from the examination of LDL from 20 healthy human subjects, the three N-glycosylated and sialylated forms are most abundant (80-100% of the total apo M in LDL) whereas the unsialylated and unglycosylated variants constitute at most 20%. Comparative analysis showed that the same five isoforms of apo M are also present in HDL. Further studies aiming at elucidating the role of apo M in health and disease will have to take this polymorphism of apo M proteins into account.  相似文献   

13.
Apolipoprotein (apo) B-100 is a key protein compound of plasma lipid metabolism. This protein, as a sole component of LDL particles, to a great extent controls the homeostasis of LDL cholesterol in the plasma. Therefore, this protein and its structural variants play an important role in development of hyperlipidemia and atherosclerosis. Intensive research into the structure and biological functions of apoB-100 has led to identification of its complete structure as well as the responsible binding sites. With the development of the methods of molecular biology, some structural variants of the apoB-100 protein that directly affect its binding properties have been described. These are mutations leading to amino acid substitution at positions 3500 (R3500Q and R3500W) and 3531 (R3531C) that have been shown to decrease the binding affinity of apoB-100 in vitro. However, only the former mutations have been unequivocally demonstrated to cause hyperlipidemia in vivo. This minireview is aimed to discuss the impact of apoB-100 and its structural variants on plasma lipid metabolism and development of hyperlipidemia.  相似文献   

14.
Abnormal low density lipoprotein metabolism in apolipoprotein E deficiency   总被引:2,自引:0,他引:2  
Apolipoprotein(apo) E deficiency is an inherited disease characterized by type III hyperlipoproteinemia and less than 1% normal plasma apoE concentration. The role of apoE in LDL metabolism was investigated by quantitating the metabolism of radiolabeled normal and apoE-deficient LDL in both normal and apoE-deficient subjects. ApoE deficiency resulted in an accumulation of plasma IDL, and a decreased synthesis of LDL consistent with a block in the conversion of IDL to LDL. The LDL isolated from the apoE-deficient patient was similar to normal LDL in hydrated density, size, and composition. However, the apoE-deficient LDL was kinetically abnormal with delayed catabolism in both normal subjects and the apoE-deficient patient. In addition, the catabolism of normal LDL in the apoE-deficient subject was increased. These results were interpreted as indicating that apoE is necessary for the conversion of IDL to LDL and the formation of kinetically normal LDL. The rapid catabolism of normal LDL in the apoE-deficient patient suggests an up-regulation of the hepatic LDL receptor pathway. Based on these results, apoE is proposed to play an important role in the conversion of IDL to LDL, the formation of kinetically normal LDL, and the regulation of LDL receptor function.  相似文献   

15.
Apolipoprotein F (apoF) is 29 kilodalton secreted sialoglycoprotein that resides on the HDL and LDL fractions of human plasma. Human ApoF is also known as Lipid Transfer Inhibitor protein (LTIP) based on its ability to inhibit cholesteryl ester transfer protein (CETP)-mediated transfer events between lipoproteins. In contrast to other apolipoproteins, ApoF is predicted to lack strong amphipathic alpha helices and its true physiological function remains unknown. We previously showed that overexpression of Apolipoprotein F in mice reduced HDL cholesterol levels by 20-25% by accelerating clearance from the circulation. In order to investigate the effect of physiological levels of ApoF expression on HDL cholesterol metabolism, we generated ApoF deficient mice. Unexpectedly, deletion of ApoF had no substantial impact on plasma lipid concentrations, HDL size, lipid or protein composition. Sex-specific differences were observed in hepatic cholesterol content as well as serum cholesterol efflux capacity. Female ApoF KO mice had increased liver cholesteryl ester content relative to wild type controls on a chow diet (KO: 3.4+/-0.9 mg/dl vs. WT: 1.2+/-0.3 mg/dl, p<0.05). No differences were observed in ABCG1-mediated cholesterol efflux capacity in either sex. Interestingly, ApoB-depleted serum from male KO mice was less effective at promoting ABCA1-mediated cholesterol efflux from J774 macrophages relative to WT controls.  相似文献   

16.
Factors influencing the association of apoA-IV with high density lipoproteins (HDL) were investigated by employing a crossed immunoelectrophoresis assay to estimate the distribution of rat plasma apoA-IV between the lipoprotein-free and HDL fractions. Incubation of rat plasma at 37 degrees C resulted in the complete transfer of lipoprotein-free apoA-IV to HDL within 45 min. When plasma obtained from fat-fed rats was incubated at 37 degrees C in the presence of postheparin plasma as a source of lipolytic activity, there was a complete transfer of HDL apoA-IV to the lipoprotein-free fraction within 30 min. With extended incubation (120 min), lipoprotein-free apoA-IV began to transfer back to HDL. Similar patterns of apoA-IV redistribution were seen when plasma from fat-fed rats was incubated with postheparin heart perfusate or was perfused through a beating heart. Incubations conducted with plasma obtained from fasted rats showed similar but markedly attenuated apoA-IV responses. Similar observations were found in vivo following intravenous heparin administration. To determine whether the transfer of apolipoproteins from triglyceride-rich lipoproteins to HDL was partially responsible for the lipolysis-induced redistribution of apoA-IV, purified apoA-I, apoE, and C apolipoproteins were added to plasma from fasted rats. When added to plasma, all of the apolipoproteins tested displaced apoA-IV from HDL in a dose-dependent manner. Conversely, apolipoproteins were removed from HDL by adding Intralipid to plasma from fasted rats. With increasing concentrations of Intralipid, there was a progressive loss of HDL apoC-III and a progressive increase in HDL apoA-IV. Intravenous injection of a bolus of Intralipid to fasted rats resulted in a transient decrease of HDL apoC-III and concomitant increase in HDL apoA-IV. From these studies, we conclude that the binding of apoA-IV to HDL is favored under conditions that result in a relative deficit of HDL surface components, such as following cholesterol esterification by LCAT or transfer of apolipoproteins to nascent triglyceride-rich lipoproteins.  相似文献   

17.
The effect of alloxan-induced insulin deficiency on high density lipoprotein (HDL) metabolism was studied in rabbits. Rabbits with alloxan-induced diabetes had significantly higher (P less than 0.001, mean +/- SEM) plasma concentrations of glucose (541 +/- 13 vs. 130 +/- 2 mg/dl), triglyceride (2851 +/- 332 vs. 101 +/- 10 mg/dl), and total plasma cholesterol (228 +/- 55 vs. 42 +/- 4 mg/dl) than did normal control rabbits. However, diabetic rabbits had lower plasma HDL-cholesterol (7.2 +/- 1 vs. 51.3 +/- 1.3 mg/dl, P less than 0.001) and HDL apoA-I (38.3 +/- 6.0 vs. 87.2 +/- 4.3 mg/dl, P less than 0.001) concentrations. HDL kinetics were compared in diabetic and normal rabbits, using either 125I-labeled HDL or HDL labeled with 125I-labeled apoA-I, and it was demonstrated that HDL fractional catabolic rate (FCR) was slower and residence time was longer in the diabetic rabbits when either tracer was used. The slow FCR and the low apoA-I pool size led to reduced apoA-I/HDL synthetic rate in diabetic rabbits (0.97 +/- 0.11 vs. 0.34 +/- 0.07 mg per kg per hr). Thus, the reduced plasma HDL-cholesterol concentrations seen in rabbits with alloxan-induced insulin deficiency was associated with a lower total apoA-I/HDL synthetic rate. Since insulin treatment restored to normal all of the changes in plasma lipoprotein concentration and kinetics seen in diabetic rabbits, it is unlikely that the phenomena observed were secondary to a nonspecific toxic effect of alloxan. These data strongly support the view that insulin plays an important role in regulation of HDL metabolism.  相似文献   

18.
Role of caveolin-1 in the regulation of lipoprotein metabolism   总被引:1,自引:0,他引:1  
Lipoprotein metabolism plays an important role in the development of several human diseases, including coronary artery disease and the metabolic syndrome. A good comprehension of the factors that regulate the metabolism of the various lipoproteins is therefore key to better understanding the variables associated with the development of these diseases. Among the players identified are regulators such as caveolins and caveolae. Caveolae are small plasma membrane invaginations that are observed in terminally differentiated cells. Their most important protein marker, caveolin-1, has been shown to play a key role in the regulation of several cellular signaling pathways and in the regulation of plasma lipoprotein metabolism. In the present paper, we have examined the role of caveolin-1 in lipoprotein metabolism using caveolin-1-deficient (Cav-1(-/-)) mice. Our data show that, while Cav-1(-/-) mice show increased plasma triglyceride levels, they also display reduced hepatic very low-density lipoprotein (VLDL) secretion. Additionally, we also found that a caveolin-1 deficiency is associated with an increase in high-density lipoprotein (HDL), and these HDL particles are enriched in cholesteryl ester in Cav-1(-/-) mice when compared with HDL obtained from wild-type mice. Finally, our data suggest that a caveolin-1 deficiency prevents the transcytosis of LDL across endothelial cells, and therefore, that caveolin-1 may be implicated in the regulation of plasma LDL levels. Taken together, our studies suggest that caveolin-1 plays an important role in the regulation of lipoprotein metabolism by controlling their plasma levels as well as their lipid composition. Thus caveolin-1 may also play an important role in the development of atherosclerosis.  相似文献   

19.
To determine the importance of hepatic apolipoprotein (apo) E in lipoprotein metabolism, HepG2 cells were transfected with a constitutive expression vector (pRc/CMV) containing either the complete or the first 474 base pairs of the human apoE cDNA inserted in an antisense orientation, for apoE gene inactivation, or the full-length human apoE cDNA inserted in a sense orientation for overexpression of apoE. Stable transformants were obtained that expressed 15, 24, 226, and 287% the apoE level of control HepG2 cells. The metabolism of low-density lipoprotein (LDL) and high-density lipoprotein-3 (HDL(3)), two lipoprotein classes following both holoparticle and cholesteryl esters (CE)-selective uptake pathways, was compared between all these cells. LDL-protein degradation, an indicator of the holoparticle uptake, was greater in low apoE expressing cells than in control or high expressing cells, while HDL(3)-protein degradation paralleled the apoE levels of the cells (r(2) = 0.989). LDL- and HDL(3)-protein association was higher in low apoE expressing cells compared to control cells. In opposition, LDL- and HDL(3)-CE association was not different from control cells in low apoE expressing cells but rose in high apoE expressing cells. In consequence, the CE-selective uptake (CE/protein association ratio) was positively correlated with the level of apoE expression in all cells for both LDL (r(2) = 0.977) and HDL(3) (r(2) = 0.998). We also show that, although in normal and low apoE expressor cells, 92% of LDL- and 80% HDL(3)-CE hydrolysis is sensitive to chloroquine suggesting a pathway linked to lysosomes for both lipoproteins, cells overexpressing apoE lost 60% of chloroquine-sensitive HDL(3)-CE hydrolysis without affecting that of LDL-CE. Thus, the level of apoE expression in HepG2 cells determines the fate of LDL and HDL(3).  相似文献   

20.
Obesity, diabetes, insulin resistance, and hyperinsulinemia are frequently associated with a cluster of closely related lipid abnormalities such as low plasma levels of high density lipoprotein (HDL) and elevated levels of triglyceride, both known to increase the risk of developing atherosclerotic disease. The molecular mechanisms linking obesity, insulin resistance, and hyperinsulinemia to low HDL levels are incompletely understood. Here we demonstrate that insulin, through a Foxa2-mediated mechanism, inhibited the expression of apolipoprotein M (apoM), an important determinant of plasma pre-beta-HDL and alpha-HDL concentrations. Obese mice had decreased apoM expression and plasma pre-beta-HDL levels due to inactivation of Foxa2 in hyperinsulinemic states. Nuclear reexpression of Foxa2 with a phosphorylation-deficient mutant Foxa2T156A (Ad-T156A) activated apoM expression and increased plasma pre-beta-HDL and alpha-HDL levels. In contrast, haploinsufficient Foxa2(+/-) mice exhibited decreased hepatic apoM expression and plasma pre-beta-HDL and HDL levels. The increase in plasma HDL levels and pre-beta-HDL formation by Foxa2 was mediated exclusively by apoM, as constitutive active expression of Foxa2 in apoM(-/-) mice had no effect on plasma HDL levels. Our results identify a fundamental mechanism by which insulin regulates plasma HDL levels in physiological and insulin-resistant states and thus have important implications for novel therapeutic approaches to prevent atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号