首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 62 毫秒
1.
PAHs降解基因及降解酶研究进展   总被引:1,自引:0,他引:1  
由于环境中的多环芳烃(PAHs)具有高遗传毒性和"三致"性(致癌、致畸和致突变),其生物降解基因和降解功能酶研究备受关注.多环芳烃双加氧酶是近年来研究较多的多环芳烃降解的关键酶系之一,主要由细菌产生,可通过氧化反应使多环芳烃开环生成小分子的中间产物并最终氧化成CO2和水.目前,有关这类酶的理化性质、结构特点、功能等的研究相继开展,本文对PAHs降解基因、降解酶的研究现状与发展趋势进行综述.  相似文献   

2.
一株多环芳烃降解菌及其在多种强化体系中降解菲的潜力   总被引:1,自引:0,他引:1  
多环芳烃是一类普遍的环境污染物,因其潜在的环境暴露和对人类健康的危害而备受关注。从石化品污染土壤样品中分离到一株以菲为唯一碳源和能源的中温菌 (15–37 ℃,最佳30 ℃) 菌株CFP312。经菌落和菌体形态观察、生理生化测试和16S rRNA同源性分析鉴定属于莫拉氏菌Moraxella sp.。这是Moraxella属中多环芳烃降解菌种的首次报道。研究表明,当菲浓度为400 mg/L时,在48 h和60 h时,菲的去除率分别为84%和90%,降解速率达到1.21、1.29 mg/(L·h)。在菲的降解过程中,检测到3,4-二氢-3,4-二羟基菲为中间产物。据此推断降解菌通过在菲的3,4位进行双加氧完成其生物降解的第一个关键步骤。在水-有机溶剂两相分配体系、胶束水溶液体系和浊点体系中检测了降解菌对不同的菲强化降解体系的适应性。结果表明,降解菌对不同降解体系都表现出了良好的适应性。另外,降解菌可在泥浆-水体系中快速降解污染土壤中的多环芳烃菲,表明其在环境修复方面具有很大的应用潜力。  相似文献   

3.
微生物降解多环芳烃(PAHs)的研究进展   总被引:13,自引:0,他引:13  
从多环芳烃(PAHs)的降解菌株的筛选、降解机制以及PAHs污染的生物修复等方面介绍了微生物降解PAHs的最新研究进展。  相似文献   

4.
微生物降解多环芳烃的研究进展   总被引:8,自引:0,他引:8  
多环芳烃(PAHs)是具有严重危害的环境污染物质。介绍PAHs的降解菌,降解机理和PAHs的生物修复方面的研究进展。土壤中PAHs的生物修复被认为是解决污染的有效方法,目前,菲的生物降解途径已经比较清楚,但对结构更为复杂的多环芳烃研究较少。文章还对消除环境中多环芳烃的相关生物技术提出展望。  相似文献   

5.
微生物降解多环芳烃的研究进展   总被引:11,自引:1,他引:11  
多环芳烃是一类长久存在于环境中,具有毒性、致突变与致癌等特性的环境优先污染物。本文对降解多环芳烃的微生物类群进行了阐述,介绍了在土壤与厌氧条件下细菌降解多环芳烃的研究情况,最后介绍了降解多环芳烃的相关酶类以及分子生物学的研究,并对消除环境中多环芳烃的相关生物技术提出展望。  相似文献   

6.
多环芳烃降解菌的筛选、鉴定及降解特性   总被引:7,自引:0,他引:7  
【目的】多环芳烃(PAHs)是一类普遍存在于环境中且具有高毒性的持久性有机污染物,高效降解菌的筛选对利用生物修复技术有效去除环境中的多环芳烃具有重要意义。研究拟从供试菌株中筛选多环芳烃高效降解菌,并分析其降解特性,为多环芳烃污染环境的微生物修复提供资源保障和科学依据。【方法】采用平板法从25株供试菌株中筛选出以菲和芘为唯一碳源和能源的高效降解菌,经16S rRNA基因序列进行初步鉴定,通过单因素实验法分析其在液体培养基中的降解特性。【结果】筛选出的3株多环芳烃高效降解菌SL-1、02173和02830经16S rRNA基因序列分析,02173和02830分别与假单胞菌属中的Pseudomonas alcaliphila和Pseudomonas corrugate同源性最近,SL-1为本课题组发表新类群Rhizobium petrolearium的模式菌株;降解实验表明,菌株SL-1 3 d内对单一多环芳烃菲(100 mg/L)和芘(50 mg/L)的降解率分别达到100%和48%,5 d后能够降解74%的芘;而其3 d内对混合PAHs中菲和芘的降解率分别为75.89%和81.98%。菌株02173和02830 3 d内对混合多环芳烃中萘(200 mg/L)、芴(50 mg/L)、菲(100 mg/L)和芘(50 mg/L)的降解率均分别超过97%。【结论】筛选出的3株PAHs降解菌SL-1、02173和02830不仅可以高效降解低分子量PAHs,还对高分子量PAHs具有很好的降解潜力。研究表明,由于共代谢作用低分子量多环芳烃可促进高分子量多环芳烃的降解,而此时低分子量多环芳烃的降解将受到抑制。  相似文献   

7.
土壤中高环多环芳烃微生物降解的研究进展   总被引:10,自引:0,他引:10  
微生物修复是去除土壤中多环芳烃(PAHs)的主要措施。本文以微生物修复PAHs污染土壤的理论基础及其难点为主线,全面综述了土壤中高环PAHs的微生物降解机理。近年来,富集分离得到的以高环PAHs为唯一碳源和能源的优势降解菌逐渐增多,其中,主要是代谢降解四环PAHs的单株降解菌,一些降解菌还能以共代谢方式利用五环PAHs。高环PAHs污染土壤修复的一个难点是其低生物可利用性,微生物通过释放生物表面活性剂、形成生物膜以及分泌胞外多糖提高高环PAHs的生物可利用性,从而加速其降解。真菌和细菌联合作用能增强污染土壤实地修复的效果。因此,通过微生物修复技术来去除土壤中PAHs具有环境友好性、经济适用性以及可持续应用性。  相似文献   

8.
三株降解芘的戈登氏菌鉴定及其降解能力   总被引:1,自引:0,他引:1  
Hu FC  Li XY  Su ZC  Wang XJ  Zhang HW  Sun JD 《应用生态学报》2011,22(7):1857-1862
从沈抚灌区多环芳烃污染土壤中筛选出的芘降解菌D44、D82S和D82Q,经形态观察、生理生化试验和16S rDNA序列分析确定均为戈登氏菌属(Gordonia sp.).3株菌的最适生长pH值均为7,当pH值低于5或高于9时,生长均受到明显抑制.降解试验表明,3株菌能以芘、苯并芘、蒽、萘、菲和荧蒽为唯一碳源和能源生长.经过7 d的培养,3株菌对初始浓度为100 mg.L-1的芘的降解率均在65%以上,对初始浓度为50 mg.L-1的苯并芘的降解率分别为79.6%、91.3%和62.8%.通过PCR检测发现D82Q和D82S含有烷烃单加氧酶基因alkB.  相似文献   

9.
多环芳烃是一类毒性较大的环境污染物。微生物降解和转化是消除此类污染物的理想方法,已发现多种细菌具有这种功能。主要针对细菌在多环芳烃降解中上游途径的代谢酶及基因簇的组成进行综述,阐述了酶的遗传学特点,并探讨了PAHs代谢基因的进化。这有助于了解PAHs的细菌降解机制,并为有效实施生物修复提供理论依据。  相似文献   

10.
多环芳烃(PAHs)是指两个或两个以上的苯环以线性排列、弯接或簇聚方式构成的一类碳氢化合物。这类化合物广泛分布于环境中, 具有潜在的致畸性、致癌性和遗传毒性。在自然环境中, 好氧细菌对PAHs的生物降解是一种很重要的方式, 凸显其在清除环境PAHs污染物中具有广阔的应用前景。在过去二十多年中, 科学家们已经从基因水平上对好氧细菌降解PAHs的机制进行了深入的研究, 其中包括PAHs降解基因的多样性、与PAHs降解有关的基因以及细菌群体PAHs遗传适应机制等。在此, 就好氧细菌对多环芳烃降解机制的研究进展进行了综述和讨论。  相似文献   

11.
低剂量混合稀土积累对黄褐土微生物主要类群的生态效应   总被引:7,自引:0,他引:7  
采用田间小区试验和室内低剂量模拟叠加试验相结合的方法,研究低剂量混合稀土在黄褐土中积累对土壤微生物主要类群的生态效应.结果表明,低剂量稀土的持续积累对土壤细菌、放线菌产生刺激、抑制、再刺激的交替作用;对真菌也产生类似的作用,但抑制作用不显著,而刺激作用持续、明显.混合稀土对3类土壤微生物数量抑制程度顺序为:细菌>放线菌>霉菌.稀土积累至150mg·kg^-1时,土壤各类微生物的种群结构均发生显著的改变,耐稀土微生物数量大幅度增加,细菌中的G^-细菌、链霉菌的白孢类群、真菌中青霉分别成为优势种群.对低浓度稀土积累的田问土壤微生物学参数模拟计算结果表明,稀土对土壤细菌、放线菌和真菌的EC50(半抑制浓度)值分别为24.1、41.6~73.8和55.3~150.1mg·kg^-1,30mg·kg^-1值可以初步确定为稀土在黄褐土中积累的安全临界值.  相似文献   

12.
COI序列:影响动物分类学与生态学的DNA barcode   总被引:3,自引:0,他引:3  
DNA barcode是一段特殊的、可用于物种鉴定的DNA序列.目前在动物中最常用的DNA barcode是细胞色素C氧化酶1号基因(COI)的部分序列.随着标准数据库的建立,基于COI基因的DNA barcode在动物分类学和生态学中得到了广泛应用.但是,采用COI基因作为DNA barcode所隐含的涉及线粒体的进化历史、遗传特性和物种成种时间的默认前提,并非完全成立,由此引发了许多问题.本文阐述了基于COI基因的DNA barcode对分类学和生态学的影响,目前存在的问题,以及可能的研究方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号