首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Precise regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) is achieved by the coordinated function of Ca(2+) channels and Ca(2+) buffers. Neuronal differentiation induces up-regulation of Ca(2+) channels. However, little is known about the effects of differentiation on the expression of the plasma membrane Ca(2+)-ATPase (PMCA), the principal Ca(2+) extrusion mechanism in neurons. In this study, we examined the regulation of PMCA expression during differentiation of the human neuroblastoma cell line IMR-32. [Ca(2+)](i) was monitored in single cells using indo-1 microfluorimetry. When the Ca(2+)-ATPase of the endoplasmic reticulum was blocked by cyclopiazonic acid, [Ca(2+)](i) recovery after small depolarization-induced Ca(2+) loads was governed primarily by PMCAs. [Ca(2+)](i) returned to baseline by a process described by a monoexponential function in undifferentiated cells (tau = 52 +/- 4 s; n = 25). After differentiation for 12-16 days, the [Ca(2+)](i) recovery rate increased by more than threefold (tau = 17 +/- 1 s; n = 31). Western blots showed a pronounced increase in expression of three major PMCA isoforms in IMR-32 cells during differentiation, including PMCA2, PMCA3 and PMCA4. These results demonstrate up-regulation of PMCAs on the functional and protein level during neuronal differentiation in vitro. Parallel amplification of Ca(2+) influx and efflux pathways may enable differentiated neurons to precisely localize Ca(2+) signals in time and space.  相似文献   

2.
The plasma membrane Ca(2+)-ATPase (PMCA) pumps play an important role in the maintenance of precise levels of intracellular Ca(2+) [Ca(2+)](i), essential to the functioning of neurons. In this article, we review evidence showing age-related changes of the PMCAs in synaptic plasma membranes (SPMs). PMCA activity and protein levels in SPMs diminish progressively with increasing age. The PMCAs are very sensitive to oxidative stress and undergo functional and structural changes when exposed to oxidants of physiological relevance. The major signatures of oxidative modification in the PMCAs are rapid inactivation, conformational changes, aggregation, internalization from the plasma membrane and proteolytic degradation. PMCA proteolysis appears to be mediated by both calpains and caspases. The predominance of one proteolytic pathway vs the other, the ensuing pattern of PMCA degradation and its consequence on pump activity depends largely on the type of insult, its intensity and duration. Experimental reduction of PMCA expression not only alters the dynamics of cellular Ca(2+) handling but also has a myriad of downstream consequences on various aspects of cell function, indicating a broad role of these pumps. Age- and oxidation-related down-regulation of the PMCAs may play an important role in compromised neuronal function in the aging brain and its several-fold increased susceptibility to neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and stroke. Therapeutic approaches that protect the PMCAs and stabilize [Ca(2+)](i) homeostasis may be capable of slowing and/or preventing neuronal degeneration. The PMCAs are therefore emerging as a new class of drug targets for therapeutic interventions in various chronic degenerative disorders.  相似文献   

3.
Trypanosoma brucei adaptation and survival in its host involve integrated regulation of Ca(2+) pumps (Ca(2+)-ATPases), which are essential in calcium ion homeostasis. Here we report the cloning and sequencing of two genes (TbPMC1 and TbPMC2) encoding plasma membrane-type Ca(2+)-ATPases (PMCAs) of T. brucei, an agent of African trypanosomiasis. Indirect immunofluorescence analysis using antibodies against the proteins and against epitope tags introduced into each protein showed that TbPMC1 co-localized with the vacuolar H(+)-pyrophosphatase to the acidocalcisomes while TbPMC2 localized to the plasma membrane. Northern and Western blot analyses revealed that TbPMC1 and TbPMC2 are up-regulated during blood stages. TbPMC1 and TbPMC2 suppressed the Ca(2+) hypersensitivity of a mutant of S. cerevisiae that has a defect in vacuolar Ca(2+) accumulation. T. brucei Ca(2+)-ATPase genes were functionally characterized by using double-stranded RNA interference (RNAi) methodology to produce inducible Ca(2+)-ATPase-deficient procyclic forms. Similar results were obtained with bloodstream form trypomastigotes, except that the RNAi system was leaky and mRNA and protein levels recovered with time. The induction of dsRNA (RNAi) caused gross morphological alterations, and growth inhibition of procyclic forms. Induction of RNAi against TbPMC1 but not against TbPMC2 caused elevated levels of cytosolic Ca(2+) and decreased mobilization of Ca(2+) from intracellular stores following ionophore addition. These results establish that T. brucei PMCA-Ca(2+)-ATPases are essential for parasite viability and validate them as targets for drug development.  相似文献   

4.
Plasma membrane calcium pumps (PMCAs) are integral membrane proteins that actively expel Ca(2+) from the cell. Specific Ca(2+)-ATPase activity of erythrocyte membranes increased steeply up to 1.5-5 times when the membrane protein concentration decreased from 50 microg/ml to 1 microg/ml. The activation by dilution was also observed for ATP-dependent Ca(2+) uptake into vesicles from Sf9 cells over-expressing the PMCA 4b isoform, confirming that it is a property of the PMCA. Dilution of the protein did not modify the activation by ATP, Ca(2+) or Ca(2+)-calmodulin. Treatment with non-ionic detergents did not abolish the dilution effect, suggesting that it was not due to resealing of the membrane vesicles. Pre-incubation of erythrocyte membranes with Cytochalasin D under conditions that promote actin polymerization abolished the dilution effect. Highly-purified, micellar PMCA showed no dilution effect and was not affected by Cytochalasin D. Taken together, these results suggest that the concentration-dependent behavior of the PMCA activity was due to interactions with cytoskeletal proteins. The dilution effect was also observed with different PMCA isoforms, indicating that this is a general phenomenon for all PMCAs.  相似文献   

5.
6.
To identify the functional unit of Ca(2+)-ATPase in the sarcoplasmic reticulum, we assessed Ca(2+)-transport activities occurring on sarcoplasmic reticulum membranes with different combinations of active and inactive Ca(2+)-ATPase molecules. We prepared heterodimers, consisting of a native Ca(2+)-ATPase molecule and a Ca(2+)-ATPase molecule inactivated by FITC labelling, by fusing vesicles loaded with each type of Ca(2+)-ATPase. The heterodimers exhibited neither Ca(2+) transport nor ATP hydrolysis, suggesting that Ca(2+) transport by the Ca(2+)-ATPase requires an interaction between functional Ca(2+)-ATPase monomers. This finding implies that the functional unit of the Ca(2+)-ATPase is a dimer.  相似文献   

7.
We recently documented the expression of a novel human mRNA variant encoding a yet uncharacterized SERCA [SR (sarcoplasmic reticulum)/ER (endoplasmic reticulum) Ca2+-ATPase] protein, SERCA2c [Gélébart, Martin, Enouf and Papp (2003) Biochem. Biophys. Res. Commun. 303, 676-684]. In the present study, we have analysed the expression and functional characteristics of SERCA2c relative to SERCA2a and SERCA2b isoforms upon their stable heterologous expression in HEK-293 cells (human embryonic kidney 293 cells). All SERCA2 proteins induced an increased Ca2+ content in the ER of intact transfected cells. In microsomes prepared from transfected cells, SERCA2c showed a lower apparent affinity for cytosolic Ca2+ than SERCA2a and a catalytic turnover rate similar to SERCA2b. We further demonstrated the expression of the endogenous SERCA2c protein in protein lysates isolated from heart left ventricles using a newly generated SERCA2c-specific antibody. Relative to the known uniform distribution of SERCA2a and SERCA2b in cardiomyocytes of the left ventricle tissue, SERCA2c was only detected in a confined area of cardiomyocytes, in close proximity to the sarcolemma. This finding led us to explore the expression of the presently known cardiac Ca2+-ATPase isoforms in heart failure. Comparative expression of SERCAs and PMCAs (plasma-membrane Ca2+-ATPases) was performed in four nonfailing hearts and five failing hearts displaying mixed cardiomyopathy and idiopathic dilated cardiomyopathies. Relative to normal subjects, cardiomyopathic patients express more PMCAs than SERCA2 proteins. Interestingly, SERCA2c expression was significantly increased (166+/-26%) in one patient. Taken together, these results demonstrate the expression of the novel SERCA2c isoform in the heart and may point to a still unrecognized role of PMCAs in cardiomyopathies.  相似文献   

8.
9.
The functional confirmation of availability of Ca2+ transport initially-active systems in the embryo cells of loach Misgurnus fossilis L. has been obtained. Using thapsigargin, the specific inhibitor of endoplasmic reticulum of Ca2+, Mg(2+)-ATPase, this enzyme activity was divided into thapsigargin-sensitive (actually endoplasmic reticulum Ca2+, Mg(2+)-ATPase) and thapsigargin-insensitive (plasma membrane Ca2+, Mg(2+)-ATPase) constituents. The Ca(2+)-independent Mg(2+)-dependent ATPase activity makes above 39.7% of the common Ca2+, Mg(2+)-ATPase activity of embryo loach. The periodic changes of Ca2+, Mg(2+)-ATPase activity (except for the changes of plasma membrane Ca2+, Mg(2+)-ATPase activity) were found out, which coincide with periodic [Ca2+]i oscillations during the synchronous divisions of loach blastomers embryos.  相似文献   

10.
Cells are equipped with mechanisms to control tightly the influx, efflux and resting level of free calcium (Ca 2+ ). Inappropriate Ca 2+ signaling and abnormal Ca 2+ levels are involved in many clinical disorders including heart disease, Alzheimer’s disease and stroke. Ca 2+ also plays a major role in cell growth, differentiation and motility; disturbances in these processes underlie cell transformation and the progression of cancer. Accordingly, research in the Strehler laboratory is focused on a better understanding of the molecular "toolkit" needed to ensure proper Ca 2+ homeostasis in the cell, as well as on the mechanisms of localized Ca 2+ signaling. A longterm focus has been on the plasma membrane calcium pumps (PMCAs), which are linked to multiple disorders including hearing loss, neurodegeneration, and heart disease. Our work over the past 20 years or more has revealed a surprising complexity of PMCA isoforms with different functional characteristics, regulation, and cellular localization. Emerging evidence shows how specific PMCAs contribute not only to setting basal intracellular Ca 2+ levels, but also to local Ca 2+ signaling and vectorial Ca 2+ transport. A second major research arearevolves around the calcium sensor protein calmodulin and an enigmatic calmodulin-like protein (CALML3) that is linked to epithelial differentiation. One of the cellular targets of CALML3 is the unconventional motor protein myosin-10, which raises new questions about the role of CALML3 and myosin-10 in cell adhesion and migration in normal cell differentiation and cancer.  相似文献   

11.
G Periz  M E Fortini 《The EMBO journal》1999,18(21):5983-5993
Maintaining high Ca(2+) concentrations in the lumen of the endoplasmic reticulum is important for protein synthesis and transport. We identified a lethal complementation group recovered in a screen for mutations that reduce Notch activity as loss-of-function alleles of the Drosophila Ca(2+)-ATPase gene Ca-P60A. Analysis of Ca-P60A mutants indicates that Ca(2+)-ATPase is essential for cell viability and tissue morphogenesis during development. Cultured cells treated with Ca(2+)-ATPase inhibitors exhibit impaired Notch cleavage and receptor trafficking to the cell surface, explaining the genetic interaction between Ca(2+)-ATPase and Notch. Notch and several other transmembrane proteins are mislocalized in tissue clones homozygous for Ca-P60A mutations, demonstrating a general effect on membrane protein trafficking caused by a deficiency in Ca(2+)-ATPase.  相似文献   

12.
Calcium signaling is used by neurons to control a variety of functions, including cellular differentiation, synaptic maturation, neurotransmitter release, intracellular signaling and cell death. This review focuses on one of the most important Ca(2+) regulators in the cell, the plasma membrane Ca(2+)-ATPase (PMCA), which has a high affinity for Ca(2+) and is widely expressed in brain. The ontogeny of PMCA isoforms, linked to specific requirements of Ca(2+) during development of different brain areas, is addressed, as well as their function in the adult tissue. This is based on the high diversity of variants in the PMCA family in brain, which show particular kinetic differences possibly related to specific localizations and functions of the cell. Conversely, alterations in the activity of PMCAs could lead to changes in Ca(2+) homeostasis and, consequently, to neural dysfunction. The involvement of PMCA isoforms in certain neuropathologies and in brain ageing is also discussed.  相似文献   

13.
There are four genes encoding isoforms of the plasma membrane Ca(2+) pump (PMCA). PMCA variability is increased by the presence of two splicing sites. Functional differences between the variants of PMCA have been described, but little is known about the adaptive advantages of this great diversity of pumps. In this paper we studied how the different isoforms respond to a sudden increase in Ca(2+) concentration. We found that different PMCAs are activated by Ca(2+) at different rates, PMCA 3f and 2a being the fastest, and 4b the slowest. The rate of activation by Ca(2+) depends both on the rate of calmodulin binding and the magnitude of the activation by calmodulin. We found that 2a is located in heart and the stereocilia of inner ear hair cells, 3f in skeletal muscle and 4b was identified in Jurkat cells. Both cardiac and skeletal muscle, and stereocilia recover very rapidly after a cytoplasmic Ca(2+)peak, while in Jurkat cells the recovery takes up to a minute. In stereocilia, 2a is the only method for export of Ca(2+), making the analysis of them unusually straightforward. This indicates that these rates of PMCA activation by Ca(2+) are correlated with the speed of Ca(2+) concentration decay after a Ca2 spike in the cells in which these variants of PMCA are expressed. The results suggest that the type of PMCA expressed will correspond with the speed of Ca(2+) signals in the cell.  相似文献   

14.
15.
An ATP-dependent Ca2+ uptake activity was identified in plasma membrane vesicles prepared from Synechococcus sp. strain PCC 7942. This activity was insensitive to agents which collapse pH gradients and membrane potentials but sensitive to vanadate, indicating that the activity is catalyzed by a P-type Ca(2+)-ATPase. A gene was cloned from Synechococcus sp. strain PCC 7942 by using a degenerate oligonucleotide based on a sequence conserved among P-type ATPases. This gene (pacL) encodes a product similar in structure to eukaryotic Ca(2+)-ATPases. We have shown that pacL encodes a Ca(2+)-ATPase by demonstrating that a strain in which pacL is disrupted has no Ca(2+)-ATPase activity associated with its plasma membrane. In addition, Ca(2+)-ATPase activity was restored to the delta pacL strain by introducing pacL into a second site in the Synechococcus sp. strain PCC 7942 chromosome.  相似文献   

16.
Treatment of Arabidopsis thaliana cells with oligogalacturonides (OG) initiates a transient production of reactive oxygen species (ROS), the concentration of which in the medium peaks after about 20 min of treatment. The analysis of OG effects on Ca (2+) fluxes shows that OG influence both Ca (2+) influx and Ca (2+) efflux (measured as (45)Ca (2+) fluxes) in a complex way. During the first 10 - 15 min, OG stimulate Ca (2+) influx and decrease its efflux, while at successive times of treatment, OG cause an increase of Ca (2+) efflux and a slight decrease of its influx. Treatment with sub- micro M concentrations of eosin yellow (EY), which selectively inhibits the Ca (2+)-ATPase of plasma membrane (PM), completely prevents the OG-induced increase in Ca (2+) efflux. EY also suppresses the transient feature of OG-induced ROS accumulation, keeping the level of ROS in the medium high. The biochemical analysis of PM purified from OG-treated cells indicates that treatment with OG for 15 to 45 min induces a significant decrease in Ca (2+)-ATPase activation by exogenous calmodulin (CaM), and markedly increases the amount of CaM associated with the PM. During the same time span, OG do not influence the expression of At-ACA8, the main isoform of PM Ca (2+)-ATPase in suspension-cultured A. thaliana cells, and of CaM genes. Overall, the reported results demonstrate that the PM Ca (2+)-ATPase is involved in the response of plant cells to OG and is essential in regulation of the oxidative burst.  相似文献   

17.
The plasma membrane calcium ATPases (PMCAs) are vital regulators of basal Ca(2+) and shape the nature of intracellular free Ca(2+) transients after cellular stimuli and are thus regulators of a plethora of cellular processes. Studies spanning many years have identified that at least some cancers are associated with a remodeling of PMCA isoform expression. This alteration in Ca(2+) efflux capacity may have a variety of consequences including reduced sensitivity to apoptosis and increases in the responsiveness of cancer cells to proliferative stimuli. In this review we provide an overview of studies focused on PMCAs in the context of cancer. We discuss how the remodeling of PMCA expression could provide a survival and/or growth advantage to cancer cells, as well as the potential of pharmacological agents that target specific PMCA isoforms to be novel therapies for the treatment of cancer.  相似文献   

18.
Human bone marrow-derived mesenchymal stem cells (hMSCs) have the potential to differentiate into several types of cells. We have demonstrated spontaneous [Ca(2+)](i) oscillations in hMSCs without agonist stimulation, which result primarily from release of Ca(2+) from intracellular stores via InsP(3) receptors. In this study, we further investigated functions and contributions of Ca(2+) transporters on plasma membrane to generate [Ca(2+)](i) oscillations. In confocal Ca(2+) imaging experiments, spontaneous [Ca(2+)](i) oscillations were observed in 193 of 280 hMSCs. The oscillations did not sustain in the Ca(2+) free solution and were completely blocked by the application of 0.1mM La(3+). When plasma membrane Ca(2+) pumps (PMCAs) were blocked with blockers, carboxyeosin or caloxin, [Ca(2+)](i) oscillations were inhibited. Application of Ni(2+) or KBR7943 to block Na(+)-Ca(2+) exchanger (NCX) also inhibited [Ca(2+)](i) oscillations. Using RT-PCR, mRNAs were detected for PMCA type IV and NCX, but not PMCA type II. In the patch clamp experiments, Ca(2+) activated outward K(+) currents (I(KCa)) with a conductance of 170+/-21.6pS could be recorded. The amplitudes of I(KCa) and membrane potential (V(m)) periodically fluctuated liked to [Ca(2+)](i) oscillations. These results suggest that in undifferentiated hMSCs both Ca(2+) entry through plasma membrane and Ca(2+) extrusion via PMCAs and NCXs play important roles for [Ca(2+)](i) oscillations, which modulate the activities of I(KCa) to produce the fluctuation of V(m).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号