首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Habitat structure has broad impacts on many biological systems. In particular, habitat fragmentation can increase the probability of species extinction and on the other hand it can lead to population outbreaks in response to a decline in natural enemies. An extreme consequence of fragmentation is the isolation of small regions of suitable habitat surrounded by a large region of hostile matrix. This scenario can be interpreted as a critical patch-size problem, well studied in a continuous time framework, but relatively new to discrete time models. In this paper we present an integrodifference host-parasitoid model, discrete in time and continuous in space, to study how the critical habitat-size necessary for parasitoid survival changes in response to parasitoid life history traits, such as emergence time. We show that early emerging parasitoids may be able to persist in smaller habitats than late emerging species. The model predicts that these early emerging parasitoids lead to more severe host outbreaks. We hypothesise that promoting efficient late emerging parasitoids may be key in reducing outbreak severity, an approach requiring large continuous regions of suitable habitat. We parameterise the model for the host species of the forest tent caterpillar Malacosoma disstria Hbn., a pest insect for which fragmented landscape increases the severity of outbreaks. This host is known to have several parasitoids, due to paucity of data and as a first step in the modelling we consider a single generic parasitoid. The model findings are related to observations of the forest tent caterpillar offering insight into this host-parasitoid response to habitat structure.  相似文献   

2.
Insect host-parasitoid systems are often modeled using delay-differential equations, with a fixed development time for the juvenile host and parasitoid stages. We explore here the effects of distributed development on the stability of these systems, for a random parasitism model incorporating an invulnerable host stage, and a negative binomial model that displays generation cycles. A shifted gamma distribution was used to model the distribution of development time for both host and parasitoid stages, using the range of parameter values suggested by a literature survey. For the random parasitism model, the addition of biologically plausible levels of developmental variability could potentially double the area of stable parameter space beyond that generated by the invulnerable host stage. Only variability in host development time was stabilizing in this model. For the negative binomial model, development variability reduced the likelihood of generation cycles, and variability in host and parasitoid was equally stabilizing. One source of stability in these models may be aggregation of risk, because hosts with varying development times have different vulnerabilities. High levels of variability in development time occur in many insects and so could be a common source of stability in host-parasitoid systems.  相似文献   

3.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号