首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
Germins and germin-like proteins are ubiquitous, expressed at various developmental stages and in response to various abiotic and biotic stresses. In this study, to functionally validate the OsRGLP2 promoter, 5′ deletion analysis of the promoter sequences was performed and the deletion fragments fused with the β-glucuronidase (GUS) and green fluorescent protein reporter genes were used for transient expression in tobacco as well as for generating stable transgenic Arabidopsis plants. Very high level of GUS activity was observed in agroinfiltrated tobacco leaves by the construct carrying the P-1063 and P-565 when subjected to abiotic stresses. Histochemical analysis of transgenic Arabidopsis plants revealed expression of reporter gene in root, leaf and stem sections of plants harboring P-1063 and P-565. Real-time qPCR analysis of transiently expressed tobacco leaves and transgenic Arabidopsis plants subjected to several abiotic stresses supported histochemical data and showed that P-565 responded to all the stresses to which the full-length promoter was responsive. The data suggest that P-565 may be a good alternative to full-length promoter region that harbors the necessary cis-elements in providing stable and high level of expression in response to wound, salt and temperature stresses.  相似文献   

3.
4.
5.
6.
To evaluate the effectiveness of a germin-like protein (GLP) in legumes against the serious soil-borne pathogen Fusarium oxysporum f. sp. lentis, an Oryza sativa root-expressed GLP (OsRGLP1) was expressed in the model legume Medicago truncatula using the recombinant vector pCOsRGLP1. The transgene was highly expressed in M. truncatula transformed lines as assessed by RT-qPCR. Consistent with the active status of the transgene there was an elevated accumulation of H2O2 in transformed progeny. Enzymatic characterization of T1 transgenic progeny showed increased superoxide dismutase (SOD) activity. The additional SOD activity in transgenic lines was insensitive to potassium cyanide and sensitive to H2O2 indicating its resemblance to FeSOD. The effectiveness of the OsRGLP1 gene was tested by monitoring the root disease after infection of wild-type and transgenic lines. Wild-type plants were greatly affected by the pathogen infection showing a percent disease index value of 50 compared to 10–18 for the transgenic lines. The tolerance of the transgenic lines leads to recovery in fresh weight and pod production to an almost normal level. Analysis of defense-related genes downstream of hydrogen peroxide (H2O2) in transgenic plants showed induction of salicylic acid and jasmonate signaling pathways and increased expression of some pathogenesis-related-1 (PR-1) genes and a plant defensin gene. Overall, the findings suggest that OsRGLP1 provides protection against the fungal pathogen F. oxysporum that may involve the direct influence of H2O2 on signaling pathways leading to the activation of defense-related genes.  相似文献   

7.

Objectives

To engineer broad spectrum resistance in potato using different expression strategies.

Results

The previously identified Ribosome-Inactivating Protein from Phytolacca heterotepala was expressed in potato under a constitutive or a wound-inducible promoter. Leaves and tubers of the plants constitutively expressing the transgene were resistant to Botrytis cinerea and Rhizoctonia solani, respectively. The wound-inducible promoter was useful in driving the expression upon wounding and fungal damage, and conferred resistance to B. cinerea. The observed differences between the expression strategies are discussed considering the benefits and features offered by the two systems.

Conclusions

Evidence is provided of the possible impact of promoter sequences to engineer BSR in plants, highlighting that the selection of a suitable expression strategy has to balance specific needs and target species.
  相似文献   

8.
The chickweed (Stellaria media L.) pro-SmAMP2 gene encodes the hevein-like peptides that have in vitro antimicrobial activity against certain harmful microorganisms. These peptides play an important role in protecting the chickweed plants from infection, and the pro-SmAMP2 gene was previously used to protect transgenic tobacco and Arabidopsis plants from phytopathogens. In this study, the pro-SmAMP2 gene under control of viral CaMV35S promoter or under control of its own pro-SmAMP2 promoter was transformed into cultivated potato plants of two cultivars, differing in the resistance to Alternaria: Yubiley Zhukova (resistant) and Skoroplodny (susceptible). With the help of quantitative real-time PCR, it was demonstrated that transgenic potato plants expressed the pro-SmAMP2 gene under control of both promoters at the level comparable to or exceeding the level of the potato actin gene. Assessment of the immune status of the transformants demonstrated that expression of antimicrobial peptide pro-SmAMP2 gene was able to increase the resistance to a complex of Alternaria sp. and Fusarium sp. phytopathogens only in potato plants of the Yubiley Zhukova cultivar. The possible role of the pro-SmAMP2 products in protecting potatoes from Alternaria sp. and Fusarium sp. is discussed.  相似文献   

9.

Background and aims

Iron (Fe) is an essential micronutrient for all higher organisms. Fe is sparingly available in calcareous soils and Fe deficiency is a major agricultural problem worldwide. Nicotianamine (NA) is a metal chelator involved in metal translocation in plants. Sweet potato is an attractive crop that can grow in poor soil and thus is useful for planting in uncultivated soil. In addition, the sweet potato has recently been suggested as a source of bioethanol. Our aim is to increase NA concentration in sweet potato to ameliorate Fe deficiency.

Method

Sweet potato plants expressing the barley NA synthase 1 (HvNAS1) gene under the control of CaMV 35S promoter were produced by Agrobacterium-mediated transformation.

Results

The transgenic sweet potato exhibited tolerance to low Fe availability when grown in calcareous soil. The level of tolerance to low Fe availability was positively correlated with the HvNAS1 expression level. The NA concentration of the transgenic sweet potato leaves was up to 7.9-fold greater than that of the non-transgenic (NT) plant leaves. Furthermore, the Fe and zinc concentrations were 3- and 2.9-fold greater, respectively, in transgenic sweet potato than in NT plant leaves.

Conclusions

Our results suggest that increasing the NA concentration of sweet potato by overexpression of HvNAS1 could significantly improve agricultural productivity and energy source.
  相似文献   

10.
Trichoderma reesei strain Rut-C30 was modified with enhanced beta-glycosidase (BGL) activity to balance the cellulase system and generated laccase (LAC) protein for lignin degradation. Initially, the binary plasmid p1300-w1 was constructed to express T. reesei bgl2 under the control of promoter P pki and T-nos terminator. Random insertion was performed via Agrobacterium tumefaciens-mediated transformation. A total of 353 mutants were obtained, and 34PTrb2 was exceptionally stable with increased FPA and BGL activity after screening for extracellular enzyme activity. Subsequently, 34PTrb2 was used as parent strain via the same method to insert the lac gene from Fomes lignosus, with promoter P gpd , followed by cbh1 signal peptide trss and T-nos as terminator. Several mutants successfully expressed enzyme LAC with stable activity of approximately 0.13 U/mL. The mutant 15Gsslac increased activity by 40.4% FPA compared with that of the host Rut-C30.  相似文献   

11.
12.
13.
14.
Natural variation of plant pathogen resistance is often quantitative. This type of resistance can be genetically dissected in quantitative resistance loci (QRL). To unravel the molecular basis of QRL in potato (Solanum tuberosum), we employed the model plant Arabidopsis thaliana for functional analysis of natural variants of potato allene oxide synthase 2 (StAOS2). StAOS2 is a candidate gene for QRL on potato chromosome XI against the oömycete Phytophthora infestans causing late blight, and the bacterium Erwinia carotovora ssp. atroseptica causing stem black leg and tuber soft rot, both devastating diseases in potato cultivation. StAOS2 encodes a cytochrome P450 enzyme that is essential for biosynthesis of the defense signaling molecule jasmonic acid. Allele non-specific dsRNAi-mediated silencing of StAOS2 in potato drastically reduced jasmonic acid production and compromised quantitative late blight resistance. Five natural StAOS2 alleles were expressed in the null Arabidopsis aos mutant under control of the Arabidopsis AOS promoter and tested for differential complementation phenotypes. The aos mutant phenotypes evaluated were lack of jasmonates, male sterility and susceptibility to Erwinia carotovora ssp. carotovora. StAOS2 alleles that were associated with increased disease resistance in potato complemented all aos mutant phenotypes better than StAOS2 alleles associated with increased susceptibility. First structure models of ‘quantitative resistant’ versus ‘quantitative susceptible’ StAOS2 alleles suggested potential mechanisms for their differential activity. Our results demonstrate how a candidate gene approach in combination with using the homologous Arabidopsis mutant as functional reporter can help to dissect the molecular basis of complex traits in non model crop plants.  相似文献   

15.
Soft rot caused by Pectobacterium carotovorum subsp. carotovorum (Pcc) is a serious disease in Chinese cabbage (Brassica rapa L. subsp. pekinensis). To reduce the severity of soft rot symptoms in Chinese cabbage, Arabidopsis AtWRKY75 was introduced into Chinese cabbage by Agrobacterium-mediated transformation, which was previously reported to reduce susceptibility to Pcc infection in Arabidopsis. Three independent Chinese cabbage transgenic lines carrying AtWRKY75 were obtained. The growth phenotypes of AtWRKY75 overexpression (OE) lines were normal. Bacterial soft rot symptoms and Pcc growth were reduced in AtWRKY75-OE Chinese cabbage lines compared with WT plants. In contrast, overexpression of AtWRKY75 had no effect on infection with a hemibiotrophic pathogen, Xanthomonas campestris pv. campestris (Xcc) causing black rot disease. These results are consistent with those observed in the transgenic Arabidopsis. We found that AtWRKY75 activated a subset of Chinese cabbage genes related to defense against Pcc infection, such as Meri15B, BrPR4, and BrPDF1.2 (but not BrPGIP2). Moreover, overexpression of AtWRKY75 caused H2O2 production and activation of H2O2 scavenge enzyme genes, suggesting that H2O2 played a role in AtWRKY75-mediated resistance to Pcc. Together, these results demonstrated that AtWRKY75 decreased the severity of Pcc-caused bacterial soft rot and activated a subset of Pcc infection defense-related genes in Chinese cabbage similar to in Arabidopsis. It is suggested that AtWRKY75 is a candidate gene for use in crop improvement, because it results in reduced severity of disease symptoms without concurrent growth abnormalities.  相似文献   

16.
17.
The production of reactive oxygen intermediates (ROI) and reactive nitrogen intermediates (RNI) is an important host defense mechanism in response to infection by Mycobacterium tuberculosis. A variety of genes have been implicated in resistance to ROI and RNI, including noxR1. However, studies in Mycobacterium avium, an important pathogen among nontuberculous mycobacteria, are limited. We aim to investigate the role of a novel gene cloned from M. avium with high similarity to noxR1, noA, in resistance against RNI and ROI in M. tuberculosis. After subcloning noA into vector for expression in E. coli, we performed survival rate analysis in the bacteria transformed with noA (pET-noA) and without noA (pET-his) after exposure to nitrosative stresses by S-nitrosoglutathione (GSNO) and sodium nitrite, and oxidative stresses by H2O2. Compared with pET-his, the survival rate of pET-noA was 1 log10-fold higher after exposure to GSNO and sodium nitrite. We observed 1 log10-fold, 2 log10-fold and 3 log10-fold higher survival rate in pET-noA than pET-his after exposure to H2O2 for 3, 6 and 9 h, respectively. With the combined treatment of H2O2 and GSNO, we found more than 2 log10-fold increase in survival rate in pET-noA comparing with pET-his, suggesting a possible synergistic effect. In summary, noA gene cloned from M. avium has been shown to protect E. coli from both RNI and ROI.  相似文献   

18.
The increase of soil-borne pathogens induced by phenolic acids that accumulate in continuous cropping soil reduces the yield and quality of crops. The aims of this study were to investigate (i) the biological control of Fusarium solani, in soil enriched with phenolic acids, by the inoculation of the endophytic fungus Phomopsis liquidambari, and (ii) the biocontrol mechanisms involved. Inoculation of P. liquidambari significantly inhibited the reproduction of F. solani. The prompt degradation of soil phenolic acids by P. liquidambari was determined, but no direct antagonism relationship was observed between P. liquidambari and F. solani, implying the alleviated stimulation of phenolic acids was a major factor in controlling F. solani. Moreover, the presence of glucose did not significantly impact the biocontrol function of P. liquidambari, and P. liquidambari inoculation significantly alleviated disease severity of peanut. Therefore, P. liquidambari could be an effective means to control F. solani in phenolic acids-rich continuous cropping soils.  相似文献   

19.
20.
Fungal endophytes use different strategies to protect host plants from abiotic and biotic stress. In this study, we isolated endophytic fungi from Pistacia vera and characterised their antifungal activity against Aspergillus flavus, Rhizoctonia solani and Sclerotinia sclerotiorum, and their release of some factors that can alter plant growth capability. Trichoderma harzianum TH 5-1-2, T. harzianum TH 10-2-2 and T. atroviride TA 2-2-1 exhibited the highest growth inhibition percentages in dual culture assays against A. flavus, R. solani and S. sclerotiorum, respectively. Among the fungal endophyte cultures, ethyl acetate extracts of T. harzianum TH 10-2-2, T. harzianum TH 5-1-2 and T. atroviride TA 2-2-1 exhibited the highest growth inhibition of S. sclerotiorum, R. solani and A. flavus, respectively. Phosphate solubilisation was induced by Byssochlamys nivea BN 1-1-1 in culture. Large amounts of siderophore production were observed with Quambalaria cyanescens QC 11-3-2 and Epicoccum nigrum EN1, but Trichoderma spp. also produced siderophore in lower amounts. Trichoderma harzianum TH 5-1-2 produced the highest chitinase activity (2.92 U/mL). In general, among the endophytes isolated, Trichoderma spp. appear to have the most promise for promoting healthy growth of P. vera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号