首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在温带湿润气候区东段不同立地条件下的红松人工林内设置面积为600 m~2(20 m×30 m)的70块矩形固定样地。在每个样地内,选取5颗最高且长势较好的优势木作为研究的对象木,用Voronoi图确定优势木相应的竞争木,测定每一块样地内优势木与竞争木之间的距离。采用Hegyi单木竞争指数模型,分析优势木在不同样地水平上的种内竞争强度,探讨林分生长因子、地形因子、土壤养分因子对优势木竞争指数的影响,并对这3类因子与优势木竞争指数进行相应的拟合和相关性分析。结果表明:红松人工林优势木竞争强度随着优势木胸径的增大而变小,并且两者之间的关系服从幂函数;红松优势木的竞争指数与其树高、胸径、冠幅呈极显著的相关关系(P<0.01);坡向、坡位、海拔对竞争指数影响极显著(P<0.01);红松人工林优势木竞争指数的大小与土壤氮磷钾含量均呈极显著的相关关系(P<0.01);pH值对优势木竞争指数的影响不显著。当红松人工林优势木平均胸径达到45cm,优势木平均树高和冠幅大于周围竞争木时,其对周围资源的利用程度增大,林木会发生自然稀疏现象,其所受的竞争压力减小。红松喜光性强,对水分的要求高,...  相似文献   

2.
We used a Bayesian hierarchical model to analyze the variation in xylem anatomy, hydraulic properties, and the relationship between anatomy and properties within Douglas-fir trees. The hierarchical scales in our study included fertilization treatments (fertilized and unfertilized), trees within the treatments, and positions within the trees. We measured tracheid diameter, tracheid length, percent latewood, number of pits per cell, density, and specific conductivity (K s) on seven positions in each of 16 fertilized and 16 unfertilized trees: the trunk at cambial age 52 (breast height), 25, and 5; a branch at cambial age 20 and 7; and a root at cambial age 42 and 22. Vulnerability to embolism was also measured on the oldest trunk, branch, and root positions. For any measurement, there was little variation between treatments, however, there was great variation among positions. Tracheid diameter, tracheid length, number of pits per cell, K s, and vulnerability to embolism decreased vertically from the roots to the branches. Correlations were evident between some positions for tracheid diameter, percent earlywood, pits per cell, and vulnerability to embolism, mostly in the fertilized treatment. We found evidence for large-scale relationships (among all observations from all trees) between density and tracheid diameter, K s and diameter, vulnerability and diameter, K s and pits per cell, and vulnerability and pits per cell. At a smaller scale of within position, however, usually only the branches and roots maintained the relationship.  相似文献   

3.
Drought‐ and insect‐associated tree mortality at low‐elevation ecotones is a widespread phenomenon but the underlying mechanisms are uncertain. Enhanced growth sensitivity to climate is widely observed among trees that die, indicating that a predisposing physiological mechanism(s) underlies tree mortality. We tested three, linked hypotheses regarding mortality using a ponderosa pine (Pinus ponderosa) elevation transect that experienced low‐elevation mortality following prolonged drought. The hypotheses were: (1) mortality was associated with greater growth sensitivity to climate, (2) mortality was associated with greater sensitivity of gas exchange to climate, and (3) growth and gas exchange were correlated. Support for all three hypotheses would indicate that mortality results at least in part from gas exchange constraints. We assessed growth using basal area increment normalized by tree basal area [basal area increment (BAI)/basal area (BA)] to account for differences in tree size. Whole‐crown gas exchange was indexed via estimates of the CO2 partial pressure difference between leaf and atmosphere (pa?pc) derived from tree ring carbon isotope ratios (δ13C), corrected for temporal trends in atmospheric CO2 and δ13C and elevation trends in pressure. Trees that survived the drought exhibited strong correlations among and between BAI, BAI/BA, pa?pc, and climate. In contrast, trees that died exhibited greater growth sensitivity to climate than trees that survived, no sensitivity of pa?pc to climate, and a steep relationship between pa?pc and BAI/BA. The pa?pc results are consistent with predictions from a theoretical hydraulic model, suggesting trees that died had a limited buffer between mean water availability during their lifespan and water availability during drought – i.e., chronic water stress. It appears that chronic water stress predisposed low‐elevation trees to mortality during drought via constrained gas exchange. Continued intensification of drought in mid‐latitude regions may drive increased mortality and ecotone shifts in temperate forests and woodlands.  相似文献   

4.

Background

A better understanding of the relationship between stand structure and productivity is required for the development of: a) scalable models that can accurately predict growth and yield dynamics for the world''s forests; and b) stand management regimes that maximize wood and/or timber yield, while maintaining structural and species diversity.

Methods

We develop a cohort-based canopy competition model (“CAIN”), parameterized with inventory data from Ontario, Canada, to examine the relationship between stand structure and productivity. Tree growth, mortality and recruitment are quantified as functions of diameter and asymmetric competition, using a competition index (CAIh) defined as the total projected area of tree crowns at a given tree''s mid-crown height. Stand growth, mortality, and yield are simulated for inventoried stands, and also for hypothetical stands differing in total volume and tree size distribution.

Results

For a given diameter, tree growth decreases as CAIh increases, whereas the probability of mortality increases. For a given CAIh, diameter growth exhibits a humped pattern with respect to diameter, whereas mortality exhibits a U-shaped pattern reflecting senescence of large trees. For a fixed size distribution, stand growth increases asymptotically with total density, whereas mortality increases monotonically. Thus, net productivity peaks at an intermediate volume of 100–150 m3/ha, and approaches zero at 250 m3/ha. However, for a fixed stand volume, mortality due to senescence decreases if the proportion of large trees decreases as overall density increases. This size-related reduction in mortality offsets the density-related increase in mortality, resulting in a 40% increase in yield.

Conclusions

Size-related variation in growth and mortality exerts a profound influence on the relationship between stand structure and productivity. Dense stands dominated by small trees yield more wood than stands dominated by fewer large trees, because the relative growth rate of small trees is higher, and because they are less likely to die.  相似文献   

5.
Abstract We examined factors affecting roost tree selection by the white‐striped freetail bat Tadarida australis (Chiroptera: Molossidae), a large insectivorous bat in suburban Brisbane, Australia. We compared biophysical characteristics associated with 34 roost trees and 170 control trees of similar diameter, height and tree senescence characters. Roost trees used by the white‐striped freetail bat had significantly higher numbers of hollows in the trunk and branches (P < 0.003) and were more likely to contain a large trunk cavity with an internal diameter of >30 cm (P < 0.001) than control trees. These trees also accommodated more species of hollow‐using fauna (P = 0.005). When comparing roost trees with control trees of similar diameters and heights, roost trees were on average at a later stage of tree senescence (P < 0.001). None of the roost trees were found in the large forest reserves fringing the Brisbane metropolitan area despite these areas being used for foraging by the white‐striped freetail bat. Although all tree locations in this study were in modified landscapes, roost trees tended to be surrounded by groups of trees and undergrowth. Roost trees provide important habitat requirements for hollow‐using fauna in suburban, rural and forested environments.  相似文献   

6.
Mountain pine beetle outbreaks are responsible for widespread tree mortality in pine forests throughout western North America. Intensive outbreaks result in significant economic loss to the timber industry and massive changes to the forest habitat. Because of the time and space scales involved in a beetle outbreak, mathematical models are needed to study the evolution of an outbreak. In this paper we present a partial differential equation model of the flight phase of the mountain pine beetle which includes chemotactic responses and tree defense. We present a numerical method for integrating this model and use this method to investigate the relationship between emergence rate, forest demographic and patterns of beetle attack. In particular we look at how emergence rate affects the beetles' ability to successfully attack strong trees, which may be an indicator of an epidemic outbreak.  相似文献   

7.
美国德克萨斯州在2011年经历了史上最严重的干旱,这一事件造成约3亿多株树木死亡。在大时空尺度上(面积约9×10~6 hm~2,时间跨度近20年),基于近1800个森林样地,4次周期性调查中的约209663株树木,使用主成份分析(PCA)和广义线性混合效应模型(GLM)回归,对树木死亡的时空差异及其干旱强度与长度对树木死亡造成的中长期复杂影响进行了研究。采用树木密度、树木基面积、林地年龄、样地调查时间间隔作为树木间的竞争指标,分析了造成大旱前后周期水平和年度水平上的样地树木死亡差异的原因。综合分析了不同地理区域、树木种组、胸径大小和林地起源的4个划分标准下树木死亡对死亡率的相对贡献。结果表明:松属树木的死亡率最低(7.92%);高度低、胸径小的树木的死亡率较大,分别为29.79%和26.00%。人工林的树木死亡率(10.26%)低于天然林(13.47%);西海湾平原生态区树木的死亡率在干旱后达到最大(22.27%);西南区的树木死亡率在干旱后也达到最大(13.78%);海拔和纬度对树木死亡率影响不明显。德州东部森林整体死亡格局形成原因较为复杂,各地理区域、林地起源、树木大小和不同树种,...  相似文献   

8.
Question: How does typhoon‐related disturbance (more specifically, disturbance in the understorey due to tree‐fall and branch‐fall) affect different species mortality rates in a vertically well‐structured forest community? Location: Cool‐temperate, old‐growth forest in the Daisen Forest Reserve, Japan. Methods: We investigated the canopy dynamics and mortality rate trends of trees ≥5 cm diameter at breast height in a 4‐ha study plot, and analysed the effects of tree diameter and spatial structure on the mortality risks for major tree species in the understorey. Results: Significant differences were found in the mortality rates and proportions of injured dead stems between census periods, which were more pronounced in the understorey than in the canopy. Acer micranthum, which showed increased mortality during typhoon disturbance periods, had a clumped distribution. In contrast, Acer japonicum and Viburnum furcatum, which showed similar mortality rates between census periods, had a loosely clumped spatial distribution and a negative association with canopy trees, respectively. In the understorey stems of Acanthopanax sciadophylloides and Fagus crenata, whose spatial distribution patterns depended on canopy gaps, significant increases in mortality rates were observed only during severe typhoon‐related disturbance periods. Conclusions: The sensitivity of trees to typhoon‐related canopy disturbance is more pronounced in the lower layers of vertically structured forest communities. Differences in mortality patterns generated through the combined effects of spatial variation in disturbance regime and species‐specific spatial distribution patterns (spatial aggregation, association with canopy trees, and canopy gap dependency) contribute to the co‐existence of understorey species in forest communities that are subject to typhoon‐related disturbance.  相似文献   

9.
Forests of western North America are currently experiencing extensive tree mortality from a variety of bark beetle species, and insect outbreaks are projected to increase under warmer, drier climates. Unlike the abrupt biogeochemical changes typical after wildfire and timber harvesting, the outcomes of insect outbreaks are poorly understood. The mountain pine bark beetle (Dendroctonus ponderosae) began to attack lodgepole pine (Pinus contorta) at the Fraser Experimental Forest in 2002 and spread throughout the research area by 2007. We compared streamwater nitrogen (N) from 2003 through 2012 with data from the previous two decades in four watersheds with distinct forest management histories, stand structures, and responses to the beetle outbreak. Watersheds dominated by old-growth had larger trees and lost 85% of overstory pine and 44% of total basal area to bark beetles. In contrast, managed watersheds containing a mixture of second-growth (30–60 year old) and old-growth (250- to 350-year old) had higher density of subcanopy trees, smaller mean tree diameter, and lower bark beetle-induced mortality (~26% of total basal area). Streamwater nitrate concentrations were significantly higher in old-growth watersheds during the outbreak than pre-outbreak levels during snowmelt and base flow seasons. In mixed-age stands, streamwater nitrate concentrations were unaffected by the outbreak. Beetle outbreak elevated inorganic N export 43 and 74% in two old-growth watersheds though the amounts of N released in streamwater were low (0.04 and 0.15 kg N ha?1) relative to atmospheric inputs (<2% of annual N deposition). Increased height, diameter, and foliar N of measured in residual live trees augmented demand for N, far in excess of the change in N export during the outbreak. Reallocation of soil resources released after pine mortality to overstory and understory vegetation helps explain high nutrient retention in watersheds affected by bark beetle outbreaks.  相似文献   

10.
1 The present study investigated the influence of tree size and bole position on selection of ponderosa pines (Pinus ponderosa Dougl. ex Laws.) by Ips pini Say (Coleoptera: Curculionidae: Scolytinae) in a northern Arizona forest. Ips pini were attracted to lower and upper bole positions with pheromone lures, and the number of attacks counted. In addition, tree phloem and bark thickness, resin flow in response to wounding and characteristics of tree water and carbon relations were all measured. 2 Bark thickness was the most strongly related tree characteristic to number of I. pini attacks. Thin bark and a high number of attacks occurred at the lower bole position of 10‐cm diameter trees and upper bole positions of 23‐, 35‐, and 50‐cm diameter trees. 3 Phloem thickness increased directly with tree size, was greater at the upper bole compared with the lower bole, but was not associated with number of attacks. 4 Resin flow did not differ strongly over tree sizes or bole positions, and was not related to number of I. pini attacks. Attacks were not related to characteristics of tree carbon and water relations measured during I. pini flights.  相似文献   

11.
Shoot growth phenology was compared for the saplings of evergreen and deciduous woody species sharing the same microsite. Growth initiation occurred earlier in evergreens (among co-stratal species) while deciduous species completed their growth earlier. Shoot growth rate was significantly greater (P<0.01) for deciduous trees than evergreen trees. The amount of shoot elongations and shoot diameter was also significantly greater (P<0.01) for deciduous trees than evergreens. On the other hand, among shrubs the amount of shoot elongation and shoot diameter was greater for evergreens but the rate of elongation and diameter was more or less similar for both. The duration of shoot elongation and shoot diameter was significantly longer in evergreens than the deciduous species. Leaf packing (number of leaves per shoot) was significantly more dense in evergreen trees (P<0.01) than in deciduous tree species. Leaf packing was more dense in evergreen than deciduous shrubs but the difference was not significant. Leaf area (per individual leaf) at full expansion was significantly greater (P<0.01) in deciduous species. Leaf dry mass and specific leaf mass in the initial stage was significantly greater for evergreen species than for deciduous species. The number of buds/10 cm of shoot was higher in evergreens. However, the per cent mortality was also higher in them.  相似文献   

12.
Newly founded colonies of the fire ant Solenopsis invicta compete intensely by brood raids, which result in a rapid reduction of colony density. Experimental plantings of colonies and analyses of sequential maps were used to examine the importance of spatial pattern in the dynamics of young populations. Colony positions were initially clumped in naturally founded cohorts, but were regular in most mature populations. Incipient colonies planted in clumped patterns were more likely to engage in brood raids than colonies planted in regular hexagonal patterns at the same average density. However, contrary to what would be expected if local crowding increased mortality, no significant increases in spatial regularity were observed during brood raiding either in the experimentally planted populations or in a natural population of more than 1200 incipient colonies. These results show that it may be difficult to infer the degree of past or current competition by passive analysis of spatial data even when field experiments show that the probability of mortality depends on local spacing.  相似文献   

13.
  • 1 Bark beetles (Coleoptera: Curculionidae, Scolytinae) are commonly recognized as important tree mortality agents in coniferous forests of the western U.S.A.
  • 2 High stand density is consistently associated with bark beetle infestations in western coniferous forests, and therefore thinning has long been advocated as a preventive measure to alleviate or reduce the amount of bark beetle‐caused tree mortality.
  • 3 The present study aimed to determine the effectiveness of thinning to reduce stand susceptibility to bark beetle infestations over a 10‐year period in Pinus jeffreyi forests on the Tahoe National Forest, California, U.S.A. Four treatments were replicated three times within 1‐ha square experimental plots. Treatments included thinning from below (i.e. initiating in the smallest diameter classes) to a residual target basal area (cross‐sectional area of trees at 1.37 m in height) of: (i) 18.4 m2/ha (low density thin); (ii) 27.6 m2/ha (medium density thin); (iii) 41.3 m2/ha (high density thin); and (iv) no stand manipulation (untreated control).
  • 4 Throughout the present study, 107 trees died as a result of bark beetle attacks. Of these, 71% (75 trees) were Abies concolor killed by Scolytus ventralis; 20.6% (22 trees) were Pinus ponderosa killed by Dendroctonus ponderosae; 4.7% (five trees) were P. jeffreyi killed by Dendroctonus jeffreyi; 1.8% (two trees) were P. jeffreyi killed by Ips pini; 0.9% (one tree) were P. jeffreyi killed by Orthotomicus (= Ips) latidens; 0.9% (one tree) were P. ponderosa killed by both Dendroctonus brevicomis and D. ponderosae; and 0.9% (one tree) were P. jeffreyi killed by unknown causes.
  • 5 In the low density thin, no pines were killed by bark beetles during the 10‐year period. Significantly fewer trees (per ha/year) were killed in the low density thin than the high density thin or untreated control. No significant treatment effect was observed for the percentage of trees (per year) killed by bark beetles.
  相似文献   

14.
Bark beetle epidemics result in tree mortality across millions of hectares in North America. However, few studies have quantified impacts on carbon (C) cycling. In this study, we quantified the immediate response and subsequent trajectories of stand‐level aboveground tree C stocks and fluxes using field measurements and modeling for a location in central Idaho, USA that experienced an outbreak of mountain pine beetle (Dendroctonus ponderosae Hopkins). We measured tree characteristics in lodgepole pine (Pinus contorta) plots spanning a range of structure and mortality conditions. We then initialized the forest vegetation simulator, an individual tree‐based model, with these measurements and simulated the response of aboveground production of C fluxes as well as trajectories of C stocks and fluxes in the coming decades. Mountain pine beetles killed up to 52% of the trees within plots, with more larger trees killed. C stocks in lodgepole pine were reduced by 31–83% following the outbreak, and plot‐level C fluxes decreased 28–73%. Modeled C stocks increased nearly continuously following the infestation, recovering to preoutbreak levels in 25 years or less. Simulated aboveground tree C fluxes increased following the immediate postoutbreak decrease, then subsequently declined. Substantial variability of C stocks and fluxes among plots resulted from the number and size of killed and surviving trees. Our study illustrates that bark beetle epidemics alter forest C cycling unlike stand‐replacement wildfires or clear‐cut harvests, due in part to incomplete mortality coupled with the preference by beetles for larger trees. The dependency of postoutbreak C stocks and fluxes on stand structure suggests that C budget models and studies in areas experiencing mountain pine beetle disturbances need to include size distribution of trees for the most accurate results.  相似文献   

15.
Species diversity in mixed forest stands is one of the factors that complicate up-scaling of transpiration from individual trees to stand level, since tree species are architecturally and functionally different. In this study, thermal dissipation probes were used to measure sap flow in five different tree species in a mixed-deciduous mountain forest in South Korea. Easily measurable tree characteristics that could serve to define individual tree water use among the different species were employed to scale up transpiration from single trees to stand level. Tree water use (TWU) was derived from sap flux density (SFD) and sapwood area (SA). Canopy transpiration E was scaled from TWU while canopy conductance (g c) was computed from E and VPD. SFD, TWU and g c were correlated with tree diameter at breast height (DBH) for all the five measured species (SFD: R 2 = 0.21, P = 0.036; TWU: R 2 = 0.83, P < 0.001; g c: R 2 = 0.63, P < 0.001). Maximum stand transpiration (E) during June, before the onset of the Asian monsoon rains, was estimated at 0.97 ± 0.12 mm per day. There was a good (R 2 = 0.94, P < 0.0001) agreement between measured and estimated E using the relationship between TWU and DBH. Our study shows that using functional models that employ converging traits among species could help in estimating water use in mixed forest stands. Compared to SA, DBH is a better scalar for water use of mixed forest stands since it is non-destructive and easily obtainable.  相似文献   

16.
Determinants of the occurrence of buttress and stilt roots are still poorly understood. These may be linked to individual's properties as a way to increase stability as trees get higher, to environmental factors that increase falling risks or interactions of both. We took advantage of a large dataset (presence of buttress, stilt roots, and tree diameter in 8415 trees from 35 1-ha plots in central Amazonia) to investigate how tree and environmental properties interact to determine the occurrence of support structures. We also made detailed measurements of allometry and canopy size in 67 trees of two dominant species. The probability of occurrence of support structures was modeled with multiple logistic regressions and boosted regression trees. We established a best-fitting subset model based on AIC ranking using unsupervised model selection. At the landscape scale, support structures were more common in large trees (bstd = 0.88, p < .001) and valleys (bstd = −0.09, p < .01), due to species turnover along topography and also due to intraspecific variation in the development of buttresses within species, linked to interactions of tree size and topography. The relationship between height and diameter (Height:Diameter) was the most important determinant of buttress occurrence (bstd = −1.57, p < .001). We conclude that less stable soils select a higher frequency of trees with support structures. However, coordinated allometric relationships among stem and crown sizes also influence the need of support structures. Thus, the presence of support structures depends on the interplay of individual plant's allometry and environmentally imposed conditions of instability. Abstract in Portuguese is available with online material.  相似文献   

17.
Tree height (H) of Kandelia obovata trees decreased sharply from 5 m at the forest interior behind the terrestrial forest to 1.5 m at the forest edge near the river bank according to an increase in the yearly waterlogged period along a belt transect. The decreasing tree stature was attributed to a decrease in the asymptote of H in the D 0.1 (stem diameter at H/10)-H relationship toward the edge. The K. obovata trees were well classified into interior and edge types using a discriminant function based on the habitat-specific D 0.1H relationships. Allometric equations, as a function of D 0.12 H, differed significantly between the interior and edge types in the estimation of the phytomasses of stems and leaves, and the leaf area per tree. On the other hand, common allometric equations were successfully established in the estimation of respective phytomasses of aboveground parts and branches. Biomass and leaf area index decreased toward the forest edge. The biomass allocation to stems decreased toward the edge, whereas those to branches and leaves increased. A dramatic change in stem diameter increment resulted in differences in the D 0.1H relationship along the tree height gradient. Relative growth rate of biomass and light-saturated net photosynthesis, which paralleled net assimilation rate from the interior to the edge, showed their maximum peaks in the middle of the belt transect. This indicates that there exists an optimal environmental condition for growth of K. obovata trees. Leaf nitrogen content tended to increase to the edge with increasing waterlogged period.  相似文献   

18.
木质藤本是生物多样性的重要组成,木质藤本通过影响支持木进而影响群落的结构和功能,但在生物多样性丰富的北热带喀斯特森林中,木质藤本与支持木的关系鲜为人知。以喀斯特季节性雨林的五桠果叶木姜子(Litsea dilleniifolia)群落为研究对象,对木质藤本的密度、分布格局及其与主要树种的关系进行调查研究,分析木质藤本对树木的影响。结果显示:(1)五桠果叶木姜子群落内木质藤本平均密度为0.0913株/m2,木质藤本在0-20m空间尺度整体表现为聚集分布,且随着尺度增大,聚集强度逐渐减弱;不同径级木质藤本在不同尺度上的分布格局不同。(2)木质藤本对不同径级、不同种类、不同聚集强度的支持木选择表现以下体征:随着支持木径级增加,木质藤本攀附的比例和每木藤本数有增加趋势,且木质藤本胸径与支持木胸径呈极显著正相关;附藤率较高的支持木有紫葳科(Bignoniaceae)种类和东京桐(Deutzianthus tonkinensis),单木附藤数量多的是南方紫金牛(Ardisia thyrsiflora);物种的聚集强度与附藤率、附藤数量呈负相关。(3)木质藤本的密度与支持木死亡率关系不显著,而物种的附藤率与死亡率呈极显著负相关。以上结果表明,木质藤本密度在原生性喀斯特季节性雨林中并不高,且木质藤本对支持木具有选择性,但其对五桠果叶木姜子群落的死亡率并未产生显著影响。该研究可为喀斯特原生性季节性雨林的物种共存、极小植物种群保育提供理论依据,也可为石漠化区域的植被修复提供科学参考。  相似文献   

19.
Question: Is there a relationship between size and death in the long‐lived, deep‐rooted tree, Acacia erioloba, in a semi‐arid savanna? What is the size‐class distribution of A. erioloba mortality? Does the mortality distribution differ from total tree size distribution? Does A. erioloba mortality distribution match the mortality distributions recorded thus far in other environments? Location: Dronfield Ranch, near Kimberley, Kalahari, South Africa. Methods: A combination of aerial photographs and a satellite image covering 61 year was used to provide long‐term spatial data on mortality. We used aerial photographs of the study area from 1940, 1964, 1984, 1993 and a satellite image from 2001 to follow three plots covering 510 ha. We were able to identify and individually follow ca. 3000 individual trees from 1940 till 2001. Results: The total number of trees increased over time. No relationship between total number of trees and mean tree size was detected. There were no trends over time in total number of deaths per plot or in size distributions of dead trees. Kolmogorov‐Smirnov tests showed no differences in size class distributions for living trees through time. The size distribution of dead trees was significantly different from the size distribution of all trees present on the plots. Overall, the number of dead trees was low in small size classes, reached a peak value when canopy area was 20 ‐ 30 m2, and declined in larger size‐classes. Mortality as a ratio of dead vs. total trees peaked at intermediate canopy sizes too. Conclusion: A. erioloba mortality was size‐dependent, peaking at intermediate sizes. The mortality distribution differs from all other tree mortality distributions recorded thus far. We suggest that a possible mechanism for this unusual mortality distribution is intraspecific competition for water in this semi‐arid environment.  相似文献   

20.
Stem water storage capacity and hydraulic capacitance (CS) play a crucial role in tree survival under drought-stress. To investigate whether CS adjusts to increasing water deficit, variation in stem water content (StWC) was monitored in vivo for 2 years and related to periodical measurements of tree water potential in Mediterranean Quercus ilex trees subjected either to permanent throughfall exclusion (TE) or to control conditions. Seasonal reductions in StWC were larger in TE trees relative to control ones, resulting in greater seasonal CS (154 and 80 kg m−3 MPa−1, respectively), but only during the first phase of the desorption curve, when predawn water potential was above −1.1 MPa. Below this point, CS decreased substantially and did not differ between treatments (<20 kg m−3 MPa−1). The allometric relationship between tree diameter and sapwood area, measured via electrical resistivity tomography, was not affected by TE. Our results suggest that (a) CS response to water deficit in the drought-tolerant Q. ilex might be more important to optimize carbon gain during well-hydrated periods than to prevent drought-induced embolism formation during severe drought stress, and (b) enhanced CS during early summer does not result from proportional increases in sapwood volume, but mostly from increased elastic water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号