首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To select appropriate recovery strategies for endangered populations, we must understand the dynamics of small populations and distinguish between the possible causes that drive such populations to low numbers. It has been suggested that the pattern of population decline may be inversely density-dependent with population growth rates decreasing as populations become very small; however, empirical evidence of such accelerated declines at low densities is rare. Here we analyzed the pattern of decline of a threatened population of woodland caribou (Rangifer tarandus caribou) in British Columbia, Canada. Using information on the instantaneous rate of increase relative to caribou density in suitable winter foraging habitat, as well as on pregnancy rates and on causes and temporal distribution of mortalities from a sample of 349 radiocollared animals from 15 subpopulations, we tested 3 hypothesized causes of decline: (a) food regulation caused by loss of suitable winter foraging habitat, (b) predation-sensitive foraging caused by loss of suitable winter foraging habitat and (c) predation with caribou being secondary prey. Population sizes of caribou subpopulations ranged from <5 to >500 individuals. Our results showed that the rates of increase of these subpopulations varied from −0.1871 to 0.0496 with smaller subpopulations declining faster than larger subpopulations. Rates of increase were positively related to the density of caribou in suitable winter foraging habitat. Pregnancy rates averaged 92.4% ±2.24 and did not differ among subpopulations. In addition, we found predation to be the primary cause of mortality in 11 of 13 subpopulations with known causes of mortality and predation predominantly occurred during summer. These results are consistent with predictions that caribou subpopulations are declining as a consequence of increased predation. Recovery of these woodland caribou will thus require a multispecies perspective and an appreciation for the influence of inverse density dependence on population trajectories.  相似文献   

2.
Population monitoring is a critical part of effective wildlife management, but methods are prone to biases that can hinder our ability to accurately track changes in populations through time. Calf survival plays an important role in ungulate population dynamics and can be monitored using telemetry and herd composition surveys. These methods, however, are susceptible to unrepresentative sampling and violations of the assumption of equal detectability, respectively. Here, we capitalized on 55 herd‐wide estimates of woodland caribou (Rangifer tarandus caribou) calf survival in Newfoundland, Canada, using telemetry (n = 1,175 calves) and 249 herd‐wide estimates of calf:cow ratios (C:C) using herd composition surveys to investigate these potential biases. These data included 17 herd‐wide estimates replicated from both methods concurrently (n = 448 calves and n = 17 surveys) which we used to understand which processes and sampling biases contributed to disagreement between estimates of herd‐wide calf survival. We used Cox proportional hazards models to determine whether estimates of calf mortality risk were biased by the date a calf was collared. We also used linear mixed‐effects models to determine whether estimates of C:C ratios were biased by survey date and herd size. We found that calves collared later in the calving season had a higher mortality risk and that C:C tended to be higher for surveys conducted later in the autumn. When we used these relationships to modify estimates of herd‐wide calf survival derived from telemetry and herd composition surveys concurrently, we found that formerly disparate estimates of woodland caribou calf survival now overlapped (within a 95% confidence interval) in a majority of cases. Our case study highlights the potential of under‐appreciated biases to impact our understanding of population dynamics and suggests ways that managers can limit the influence of these biases in the two widely applied methods for estimating herd‐wide survival.  相似文献   

3.
Conservation strategies for populations of woodland caribou Rangifer tarandus caribou frequently emphasize the importance of predator–prey relationships and the availability of lichen-rich late seral forests, yet the importance of summer diet and forage availability to woodland caribou survival is poorly understood. In a recent article, Wittmer et al. (Can J Zool 83:407–418, 2005b) concluded that woodland caribou in British Columbia were declining as a consequence of increased predation that was facilitated by habitat alteration. Their conclusion is consistent with the findings of other authors who have suggested that predation is the most important proximal factor limiting woodland caribou populations (Bergerud and Elliot in Can J Zool 64:1515–1529, 1986; Edmonds in Can J Zool 66:817–826, 1988; Rettie and Messier in Can J Zool 76:251–259, 1998; Hayes et al. in Wildl Monogr 152:1–35, 2003). Wittmer et al. (Can J Zool 83:407–418, 2005b) presented three alternative, contrasting hypotheses for caribou decline that differed in terms of predicted differences in instantaneous rates of increase, pregnancy rates, causes of mortality, and seasonal vulnerability to mortality (Table 1, p 258). These authors rejected the hypotheses that food or an interaction between food and predation was responsible for observed declines in caribou populations; however, the use of pregnancy rate, mortality season and cause of mortality to contrast the alternative hypotheses is problematic. We argue here that the data employed in their study were insufficient to properly evaluate a predation-sensitive foraging hypothesis for caribou decline. Empirical data on seasonal forage availability and quality and plane of nutrition of caribou would be required to test the competing hypotheses. We suggest that methodological limitations in studies of woodland caribou population dynamics prohibit proper evaluation of the mechanism of caribou population declines and fail to elucidate potential interactions between top-down and bottom-up effects on populations. An erratum to this article can be found at  相似文献   

4.
5.
Jason E. Tanner 《Oecologia》2000,122(4):514-520
The influence of environmental variation on the demography of clonal organisms has been poorly studied. I utilise a matrix model of the population dynamics of the intertidal zoanthid Palythoa caesia to examine how density dependence and temporal variation in demographic rates interact in regulating population size. The model produces realistic simulations of population size, with erratic fluctuations between soft lower and upper boundaries of approximately 55 and 90% cover. Cover never exceeds the maximum possible of 100%, and the population never goes to extinction. A sensitivity analysis indicates that the model’s behaviour is driven by density dependence in the fission of large colonies to produce intermediate sized colonies. Importantly, there is no density-dependent mortality in the model, and density dependence in recruitment, while present, is unimportant. Thus it appears that the main demographic processes which are considered to regulate population size in aclonal organisms may not be important for clonal species. Received: 18 August 1999 / Accepted: 29 October 1999  相似文献   

6.
The survival probability of an individual may be limited by density-dependent mechanisms and by environmental stochasticity, but can also be modified by individual characteristics. In our study, we investigated over-winter survival of subadults of an enclosed European rabbit Oryctolagus cuniculus population in a temperate zone habitat over the period 1992–2002. We: (1) selected for appropriate models to explain individual variation in over-winter survival and the animals autumn body mass, the latter was used as a measure of the individual pre-winter body condition; and (2) aimed to compare the sensitivity of the target variables on the realised variation of the factors considered. Model selection based on information theory revealed that individual over-winter survival was best explained by the combination of autumn body mass, winter temperature, population density and sex, where the probability of survival was higher in females than in males. According to this model, the probability of survival reacted most sensitively to variation in the autumn body mass and in winter temperature. Individual autumn body mass was best explained by the combination of the date of birth, population density, and weather conditions by means of the percentage of rainy days during the first 2 months after the animals had emerged above ground, where the autumn body mass was negatively related to the percentage of rainy days. The chosen model suggested that the autumn body mass reacted most sensitively to variation in the date of birth. Combining these models, we found that weather conditions during two different periods of time as well as population density, sex and the date of birth operated together to determine the probability of over-winter survival. In particular, the study points out the high impact of environmental stochasticity on over-winter survival: (1) by direct effects of winter temperature conditions, and (2) by the indirect action of weather conditions to which the animals were exposed during the early period of juvenile development.  相似文献   

7.
Unravelling the contributions of density‐dependent and density‐independent factors in determining species population dynamics is a challenge, especially if the two factors interact. One approach is to apply stochastic population models to long‐term data, yet few studies have included interactions between density‐dependent and density‐independent factors, or explored more than one type of stochastic population model. However, both are important because model choice critically affects inference on population dynamics and stability. Here, we used a multiple models approach and applied log‐linear and non‐linear stochastic population models to time series (spanning 29 years) on the population growth rates of Blue Tits Cyanistes caeruleus, Great Tits Parus major and Pied Flycatchers Ficedula hypoleuca breeding in two nestbox populations in southern Germany. We focused on the roles of climate conditions and intra‐ and interspecific competition in determining population growth rates. Density dependence was evident in all populations. For Blue Tits in one population and for Great Tits in both populations, addition of a density‐independent factor improved model fit. At one location, Blue Tit population growth rate increased following warmer winters, whereas Great Tit population growth rates decreased following warmer springs. Importantly, Great Tit population growth rate also decreased following years of high Blue Tit abundance, but not vice versa. This finding is consistent with asymmetric interspecific competition and implies that competition could carry over to influence population dynamics. At the other location, Great Tit population growth rate decreased following years of high Pied Flycatcher abundance but only when Great Tit population numbers were low, illustrating that the roles of density‐dependent and density‐independent factors are not necessarily mutually exclusive. The dynamics of this Great Tit population, in contrast to the other populations, were unstable and chaotic, raising the question of whether interactions between density‐dependent and density‐independent factors play a role in determining the (in) stability of the dynamics of species populations.  相似文献   

8.
9.
Experimental research has identified many putative agents of amphibian decline, yet the population-level consequences of these agents remain unknown, owing to lack of information on compensatory density dependence in natural populations. Here, we investigate the relative importance of intrinsic (density-dependent) and extrinsic (climatic) factors impacting the dynamics of a tree frog (Hyla arborea) population over 22 years. A combination of log-linear density dependence and rainfall (with a 2-year time lag corresponding to development time) explain 75% of the variance in the rate of increase. Such fluctuations around a variable return point might be responsible for the seemingly erratic demography and disequilibrium dynamics of many amphibian populations.  相似文献   

10.
1. Multiannual population cycles of geometrid moths are thought to be driven by trophic‐level interactions involving a delayed density‐dependent component. Predation on adult moths has been a little‐studied mechanism of this phenomenon. 2. Using 29 daytime and 61 night‐time predation trials in the field, we exposed living autumnal moth (Epirrita autumnata Borkhausen, Lepidoptera: Geometridae) females to their natural predators during each autumn throughout the 10‐year population cycle. 3. In our northern study location (70°N), insectivorous passerines had already migrated, and harvestman Mitopus morio Fabricius (Opiliones: Phalangiidae) was found to be the main predator of the adult moths. The predation mortality occurred mainly at night and was positively correlated with the minimum temperature measured during the predation trial. 4. Despite high annual variability in the degree of adult predation, both direct and delayed density‐dependent effects were weak and indicate that predation on adult moths in the autumn does not have any regulatory role in cyclic population dynamics of the autumnal moth in northern Fennoscandia.  相似文献   

11.
1. It has been suggested that chemical information from crowded populations of an animal such as Daphnia carries a cue indicating imminent food limitation, and we suggest that in the presence of fish kairomones, it may also convey a hint of the need to enhance antipredation defences. 2. We performed two‐factorial experiments with Daphnia grown in flow‐through plankton chambers in medium containing high levels of Scenedesmus food plus chemical information on either low or high population density levels and in the presence or absence of fish chemical cues (kairomones) and recorded (i) the effects on Daphnia growth rate and reproduction, and (ii) the effects on Daphnia depth selection. Further depth‐selection experiments were performed to test the reaction of Daphnia to crowding information at different Daphnia concentrations and to test its effect on daytime and night‐time depth selection by different Daphnia instars in the presence of kairomones. 3. The effects of crowding information alone (in the absence of kairomones) were weak and were not significantly strengthened by the addition of kairomones. The effects of kairomones alone (in the absence of crowding information) were much stronger and were increased by the presence of crowding chemicals: Daphnia selected greater depths in daylight (the later the instar and the larger its body size, the greater the depth), their body growth was slower and daily reproductive investment reduced, compared with Daphnia grown in the absence of crowding information. This suggested that crowding chemicals carry a cue indicating the need to invest more into antipredation defences. 4. The adaptive significance of these effects was confirmed by the differential vulnerability to predation of the Daphnia when offered as prey to live roach after being grown for 6 days either in the presence (higher vulnerability) or in the absence (lower vulnerability) of information on high density. 5. The strong interaction between crowding information and fish kairomones may be explained either as the reaction to a cue indicating impending food stress or as the reaction to a signal of increased predation risk. While the former scenario is already known from crowding studies, the latter is a novel idea that stems from the old concept of ‘low‐density anti‐predation refuge’. The two scenarios are not mutually exclusive: each stems from the need to invest in survival rather than in growth and reproduction [Corrections were made to this paragraph after first online publication on 4 April 2012].  相似文献   

12.
13.
In this work we present a mathematical model describing the dynamics of a population where sex allocation remains flexible throughout adult life and so can be adjusted to current environmental conditions. We consider that the fractions of immature individuals acquiring male and female sexual roles are density dependent through nonlinear functions of a weighted total population size. The main goal of this work is to understand the role of life-history parameters on the stabilization or destabilization of the population dynamics.The model turns out to be a nonlinear discrete model which is analysed by studying the existence of fixed points as well as their stability conditions in terms of model parameters. The existence of more complex asymptotic behaviours of system solutions is shown by means of numerical simulations.Females have larger fertility rate than males. On the other hand, increasing population density favours immature individuals adopting the male role. A positive equilibrium of the system exists whenever fertility and survival rates of one of the sexual roles, if shared by all adults, allow population growing while the opposite happens with the other sexual role. In terms of the female inherent net reproductive number, ηF, it is shown that the positive equilibria are stable when ηF is larger and closed to 1 while for larger values of ηF a certain asymptotic assumption on the investment rate in the female function implies that the population density is permanent. Depending on the other parameters values, the asymptotic behaviour of solutions becomes more complex, even chaotic. In this setting the stabilization/destabilization effects of the abruptness rate in density dependence, of the survival rates and of the competition coefficients are analysed.  相似文献   

14.
R. N. Harris 《Oecologia》1987,71(2):280-285
Summary The roles of density-dependent larval survival and cannibalism of larvae as potential mechanisms of population regulation in the newt (Notophthalmus viridescens dorsalis) were evaluated in laboratory and field experiments. In laboratory containers, adults cannibalized larvae and large larvae cannibalized smaller larvae. In artificial ponds, larval survival did not depend on initial larval density. No cannibalism could be demonstrated in the complex environment, although the experiment was powerful enough to detect an ecologically relevant difference in survival. Adult growth was negatively correlated with the final biomass of larval newts, suggesting that the two life stages competed for resources. Larval growth rates were negatively correlated with final larval density, suggesting that larvae competed with each other. The proportion of larvae that became sexually mature at age 7 months (paedomorphs and adults that skipped the eft stage) varied inversely with larval density. Therefore, the potential regulatory mechanisms identified in this study are competition within and between life stages.  相似文献   

15.
The body length and body weight of all adult common toads (Bufo bufo) breeding at a pond in south Dorset were measured between 1983 and 1993. Each toad was placed into one of four categories depending on its sex and whether it was either a first time breeder or an animal that had previously bred. The body condition of each male and female toad for each year was compared with the average body condition of all the male and female toads captured over the 11 years of the study so that between-year differences in condition could be detected. Changes in body condition were compared with changes in body condition were compared with changes in toad density, rainfall and climatic temperature during the previous summer (March–September), during hibernation (October–February) and during the month preceding the start of spawning. During the study there was a decline in the body condition of all toad categories and these changes were significantly correlated with changes in toad density and climatic temperature. Toads were also more likely to enter hibernation in poor condition following a hot dry summer than after either cool wet or hot wet summers. Body condition explained 41% of the size-specific variation in fecundity.  相似文献   

16.
Heteropteran predators constitute an important component of predatory guilds in terrestrial and aquatic ecosystems. Most heteropteran species have generalist diets, and intraguild predation has been documented in most heteropteran families. Zoophytophagous species also frequently engage in intraguild interactions. An increase in extraguild prey density is often predicted to reduce intraguild predation between guild members by providing abundant alternate prey. However, an increase of extraguild prey density may also be associated with an increase in the density of intraguild predators, which could instead strengthen intraguild predation. Evaluating the combined effect of these potentially opposing influences on intraguild predation is difficult. Most studies have been carried out in the laboratory, using artificially simplified communities of predators and prey and employing spatial and temporal scales that may not reflect field conditions. We review experimental studies examining how extraguild prey density influences the intensity of intraguild predation and then report an observational case study examining the influence of extraguild prey density on the intensity of intraguild predation at larger spatial and temporal scales in unmanipulated cotton fields. Fields with more abundant extraguild prey (aphids, mites) were not associated with elevated densities of intraguild predators, and were strongly associated with increased survival of intraguild prey (lacewing larvae). In this system, the ability of extraguild prey to relax the intensity of intraguild predation, as previously documented in small-scale field experiments, also extends to the larger spatial and temporal scales of commercial agriculture.  相似文献   

17.
Abstract 1. Ecological theory suggests that density‐dependent regulation of organism abundance will vary from exogenous to endogenous factors depending on trophic structure. Changes in abundance of soil arthropods were investigated at three trophic levels, springtails (Collembola), predaceous mites (Acari), and macro‐arthropods (spider, adult and larval beetles, centipedes). Predictions were that springtails are predator regulated and mites are food limited according to the Hairston et al. (1960) model, which predicts alternating regulation by competition and predation from fungi to springtails to mites to macro‐arthropods. The alternate hypothesis was based on the bottom‐up model of trophic dynamics, which predicts that each trophic level is regulated by competition for resources. 2. The relative contributions to springtail and mite population dynamics of endogenous (i.e. density‐dependent population growth related to food availability) and exogenous (i.e. predation and weather) factors were tested using time‐series analysis and experimental manipulation of water conditions. Box patterns were distributed within an aspen forest habitat located in the Canadian prairies and surveyed weekly from May to September 1997–1999. Each box depressed the leaf litter, creating a microhabitat island for soil arthropods that provided counts of invertebrates located immediately beneath the boxes. 3. Strong evidence was found for endogenous control of springtail and mite numbers, indicated by a reduction in population growth related to density in the previous week. Contrary to predictions, no evidence was found for regulation of springtail numbers by mites, or for regulation of mite numbers by macro‐arthropods. Springtail population growth rate was related positively to current springtail density (8 and 23% variation explained) and related negatively to 1‐week lagged density (85 and 58%), and related negatively to temperature (5 and 5%) for time‐series data and for experimental addition of water respectively. Mite population growth rate was related positively to current mite density (54%) and temperature (4%), and negatively to 1‐week lagged mite density (20%) and precipitation (6%) for time‐series analysis. For experimental addition of water, mite growth rate was related positively to current mite density (44%) and temperature (5%), and negatively to 1‐week lagged density (11%). Results differed from the Hairston et al. (1960) model predictions but were consistent with a bottom‐up view that springtail and mite populations were regulated intrinsically by competition for food and secondarily by temperature as a function of reproduction.  相似文献   

18.
19.
A fitness function (function maximized under natural selection) is studied in a population model in which the growth of a population is suppressed by crowding, density-independent continuous mortality (by euryphagous predators) and periodic disturbances. The dynamics of the population density between occurrence of disturbance can be expressed as,dN/dt=(F(N/K)−D)N, whereN is the population density,K is the carrying capacity,D is the density-independent continuous mortality, andF is the growth regulation factor described as a function of crowding (N/K). The period of disturbance isS. The survival rate under disturbance isu. It is concluded that the fitness function is (approximately) a product of competitive ability (C), carrying capacity, and degree of saturation, and is given byCKF −1(D−(lnu)/S). The degree of saturation is the inverse function of regulation factor (F) at the death rate due to predators and disturbance. I assume a population in which density is regulated only through survival. In this case, a low survival rate at the critical age-group means a high value ofCKF −1(D−(lnu)/S). Therefore, the reciprocal of the density-dependent survival rate at critical age-group is a measure of the fitness function. Using this measure, I predict the optimal age (body size) at first reproduction of a species of salamander. I also found that fitness calculated from observed values ofl(x) andm(x) includes a tautology. When the concept of fitness function is compared with the ESS method, the latter is more flexible. However, there is a possibility that an ESS is at the minimum of fitness function.  相似文献   

20.
Synopsis The size structure and diet of the Arctic shanny,Stichaeus punctatus, were studied at two sites, one at Nuvuk Islands in the Arctic, and one at Newman Sound, in eastern Newfoundland. The Newfoundland population showed peaks corresponding to 0+,1+, and an accumulation of older individuals, while the Nuvuk population was dominated by 2+ and 3+ combined, and individuals aged 6+ and older. Epiphytic, harpacticoid copepods were the most important food items for the smaller Arctic shanny, but the importance of harpacticoid copepods decreased with increasing fish size. Harpacticoid copepods are thus a link between the macro-algae and the young stages of the Arctic shanny. Since Arctic shanny are the main food used by black guillemots to feed chicks, these copepods are also an indirect link between benthic algal production and these seabirds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号